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ABSTRACT

/5  o9"
The burning of liquid droplets in a high

performance combustor is essentially an unsteady process.

However, recognition is given to the fact that unsteady

analysis has rarely been given to the problem of rapid

burning and vaporization.

Through unsteady analysis conditions are

established whereby it is possible to consider that

droplets do vaporize and burn in a nearly steady state

during most of their lifetime. Periodic solutions are

then obtained when the droplet is burnin£ in an unsteady

acoustic field of the ambient gas.

It is shown from the periodic solutions that

extremely strong response of the vaporization rate and

burning rate can occur throughout the frequency spectrum.

Application to the problem of combustion instability is

indicated.
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NOMENCLATURE

¢L

A

B

B(T)

nose radius of liquid body

(I/B_)- 2" or, when subscripted, constant

of integration in high frequency analyses

Spalding transfer number, Cp_ (Ti:_-- _ _I/_l _

_p

pre-exponential frequency factor in chemical
kinetics

Cp

C¥

Ci.

C
Doi

E

F

specific heat at constant pressure

specific heat at constant volume _.

specific heat of liquid

binary diffusion coefficient

activation energy of reaction kinetics

boundary layer stream function variable

low frequency expansion functions of P

enthalpy or low frequency expansion coefficients
of _-

H, S,%,
RiU I WR high frequency expansion functions for P, (T)VI (

_,-4, V., high frequency expansion functions for H,NiV.,R _iW N
r I_ w.

¢" ' ' complex variable,

t

K

stoichiometric mass ratio, oxidizer to fuel

index for axisymmetric or two-dimensional flow

low frequency expansion coefficients of _
v

ratio of two characteristic times or _/_

latent heat of vaporization
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m

M

OE]

P

P
Pr

Ot
r _

Re

9

_C

T

U

Lewis number

linear operator or perturbation in _]Lc

mass flow rate per unit area

total mass flow rate ]_

Mach number or space denendent hart of

perturbation

intrinsic coordinate normal to body unless
otherwise noted

,the order of E 3

pressllre

s._ace dependent -)art O[ _ perturbation

Prandt i number

stoichiometric heat of reaction

heat release her unit mass of fluid due to

chemical reaction

i _ com_)onent of heat flux vector

radial variable

_as constant for snecie '&

perturbation amplitude of Pc

Reynolds number

intrinsic coordinate running alon_ body from
the stagnation point

Schmidt number /

time

temperature

velocity in $ direction

velocity in inviscid stream
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m

V

V

vK

W

YK

Z

velocity in n direction

flat plate v-velocity variable

stagnation point v-velocity variable

ieh
component of mass weighted average

gas velocity

ith component of absolute velocity of specie
K

.th
i component of diffusion velocity of specie
K .-

molecular weight

ith space variable

variable along axis of liquid body

boundary layer variable in n direction

mass fraction of K th specie

space dependent part of y_perturbation

stagnation point boundary layer variable

¥

e

high frequency variable

high frequency boundary layer variables

specific heats, C_/Cw _ratio of

small perturbation parameter

stagnation point boundary layer variable

boundary layer variable

angle between _ and body axis

body curvature or perturbation in thermal

conductivity

thermal conductivity

viscosity and second visocity coefficients
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6U

Superscripts

boundary layer variable

low frequency boundary layer variable

or space dependent part of _ perturbation

density

space dependent part of T perturbation

liquid temperature or time

shear stress tensor

space dependent part of p perturbation

dissipation function

stream function

frequency

temperature exponent in transport property

laws (subscripted by appropriate transport

property)

rate of mass generation of specie K per unit
mass of fluid

_s)

vectorial quantity

total differentiation with respect to

independent variable

dimensional quantity

steady state solution

steady state quantity unless otherwise noted

perturbation quantity, time and space dependent

.th
l term of expansion in powers of a parameter
or variable.
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Subscripts

cH

F

H_

Z¢

t,,.

0

0

r0rl.

_B

F,

eo

outer boundary where conditions are specified

chemical

droplet

diffusion

flame

fuel

gas

heat-up

"inner"

initial conditions

specie K

liquid

ratio of quantities, liquid to gas

oxidizer

initial conditions or "outer"

real or imaginary quantities

reference quantities

wall or liquid surface

wet bulb

fuel side of flame, at wall

fuel side of flame, at flame

oxidizer side of flame, at flame

ambient conditions or at infinity of boundary

layer flow

.th
l term in expansion of powers of _

Other quantities, superscripts, or subscripts are defined

at their origin in the text and appendices.



I-

±

!
I

i



- 1 -

INTRODUCTION

Many important combustion and propulsion systems

involve the injection of a liquid fuel and/or oxidizer

into the combustion chamber. Subsequent to the injection

process atomization, vaporization, ignition, and burning

of the substance occurs. In view of the high temperatures

usually found in combustion chambers this conversion process

from liquid to burned gas takes place extremely rapidly,

and from the frame of reference of a liquid droplet this

conversion process is essentially unsteady. The droplet,

injected under high pressure and low temperature, will

heat up in time. In view of the vaporization of the liquid,

the liquid-gas interface must contract in time. The

conditions of the ambient gas immediately after droplet

formation do not correspond to the distributions of

temperature, velocity, etc. which exist around the droplet

after sufficient time has elapsed for the initial distribution

to "relax". Secondary atomization may occur if the gas

flow field in which the droplet exists creates dynamic

forces _rong enough to overcome the cohesive surface tension

forces. Combustors are usually quite turbulent and the

droplet is therefore burning in a randomly fluctuating field.

The ambient donditions in the gas vary as the droplet moves
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through the combustor. Finally, burning may take place

in the presence of organized acoustic oscillations of

the chamber gas, and oscillatory combustion has long been

a mystery in reference to unstable combustion systems.

It has been the practice, however, to always

treat the droplet burning process as essentially quasi-

steady. That is, at any instant of time the burning

rate and heat-up rate are calculated from equations based

on the instantaneous average conditions in the surroundings

which are assumed stationary in time. The liquid-gas

interface is assumed stationary. From the theoretical

standpoint this always amounts to neglect of time rates

of storage of mass, energy, and momentum in the diffusion

field surrounding a droplet. The reason that this

assumption is made is that the time dependent problem

is essentially non-linear and extremely difficult.

Solutions to problems which even separate the above types

of unsteadiness have never been obtained for high

temperature, rapid burning or vaporization.

A great deal of work, both theoretical and

experimental, has been performed through the quasi-steady

approach; excellent reviews have been published (I, 2) 1 .

No attempt will be made to give such a review here.

i. Numbers in parentheses refer to References on page 154.
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However, some essentials of these theories will be

derived as a natural course toward the unsteady problem.

The purposes here are to first investigate

errors introduced in some of the quasi-steady assumptions

when an isolated droplet is burning in a non-oscillatory

ambient gas. The second is to gain some insight into

oscillatory combustion by obtaining a periodic solution

to the burning problem when a periodic sound wave is

prop&gating through the ambient gas. Much more attention

will be paid to the second purpose than the first. It

will be seen that there is great difficulty in obtaining

a mathematically well-posed problem in the unsteady

state unless a rather complex theory is built for the

steady state. These difficulties always arise when some

of the essential physics of the problem are removed for

treatment of the steady state problem and then extended

to the unsteady state.

The overall questions which are examined are

I.) under what conditions in a non-oscillatory field will

a droplet burn during most of it's lifetime in essentially

a quasi-steady fashion? and 2.) given the first set of

conditions is it possible that the periodic burning and/or

vaporization rate under acoustic periodic oscillations

of the ambient gas will rand to amplify or damp the

acoustic oscillations?
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CHAPTER I

FUNDAMENTALS AND THE STAGNANT-FILM QUASI-STEADY THEORY

A. Basic Equations

In order that all the subsequent problems to be

treated will have some measure of apparent order it is

best that the full set of differential equations describ-

ing the phenomena be set down at the beginning. The

system for consideration is a liauid body at rest immersed

in a flowing or stagnant gas. The liquid is volatile and

the vapor is capable of chemical reactions with the ambient

gas. The following initial assumptions will be made

concerning the gas:

i. It is a continuum.

2. There is heat transfer by conduction only -

no radiation is considered.

1
3. There are no overall mass sources.

4. Mass diffusion occurs by a concentration

gradient only. Thermal and pressure

diffusion are neglected. The validity of

this will rest on further assumptions to

be made.

i. However, there may be individual species mass sources due

to the p_esence of combustion.
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5. The mixture at any point in the gas is a

binary fluid. 0nly two species are allowed,'

e.g., fuel vapor and a ficticious single com-

ponent product gas. Thus, the extreme complexi-

ty of multicomponent diffusion is avoided.

6. There are no overall or preferential species

body forces. (gravitational, centrifugal,

electromagnetic, etc.).

7. The flow is locally laminar.

Then following Tsien (3) and Penner (4) the

governing equations are given in Cartesian tensor notation

Continuity

S2ecies Continuity (_ = I_2)

Dt--_ ÷ e* ]-f[
Momentum

Energy

D A _ _"

The diffusion velocity, VK" , is given by
L

V_i = - D,2 T*r
and the relation of the mass weighted average velocity_

(i.i)

(1.2)

(1.3)

(1.4)

i. This is the velocity of the center of mass of a fluid element.
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is
and the absolute velocity of species K, VK[ ,

v A ,(
&

The sheer stress tensor, _i _, is given by

(1.6)

(1.7)

The heat flux vector,

and diffusion and is given by

2 _

The dissipation function, _, is given by

Q_ , contains both heat conduction

(1.8)

(1.9)

The energy equation, Eq. (1.4), refers only to sensible

and _¢H must therefore be included• _: andenthalpy
V

_¢H can only be determined if chemical kinetics are

considered.

Except where noted the following additional

assumptions will hold through most _ the work:

8. Each consdtuent of the mixture will obey

the perfect gas law, each component being

•

thermally and calorically perfect.

The viscosities, _ Diz product, and thermal

conductivity will be specified functions of

temperature only.
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i0. The specific heats of each species will be

the same, implying equal molecular weights

and making assumption 4 above plausible.

Then the state equation is

PK= R. S,.'T T

P"= P,'_*t:'_

: = :T" 1,+* e, T { (_ =
(l.lO)

The transport property laws are

A A

)_I. (W_ T _ ¢_'
(i.Ii)

Eq_. (I.i)-(i.ii) together with appropriate boundary

conditions are sufficient to specify the gas dynamic problem

if chemical kinetics expressions are used to determine /4/2 .

In what follows it will usually be possible to bypass the

kinetics problem. In fact, 14_ and consequentlychemical

_ e_ will be set equal to zero for the present and

consideration will be given only to regions where chemical

reaction is absent. Regions where it does occur will be

_treated later.

Eq%. (1.10) and (1.6) have as a consequence that
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so that Eq. (1.8) is accordingly simplified.

Non-dimensionalization of the above equations is

affected by introducing a reference time, velocity, density,

temperature, length, and viscosity and by further assuming

Then

T = T'/T2

_: xtl×:

Re.= u_r _ "_r

"_/xJ L, = $,IPrK=tr

p = e'/_:uJ 2
-7--

These reference quantities are as yet undefined and will be

chosen differently for different applications. Continuity

becomes

K 5--x.{__ I =o
(1.12)
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Combination of Eq's. (1.2) and (1.5) yields

(1.13)

Combination of E_B. (1.5) and (1.6) yields a mass transfer

relation

(1.14)

Momentum, Eq. (1.3), becomes

_v_ + v. _v_ I___+ _ _.__ (1.15)

where

"_.,] _ _*_I + _ _ _'_

Combinationof Eq's. (1.8) and (i.i0) yields the energy

(1.16)

equation .

where the dissipation function, _ , is

(1.17)

(i.18)

The state equation , Eq. (I.i0),
is

.R=F (1.19)
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which holds also for each specie. Finally, the transport

(1.20)

It will be found that the restriction on _Z will never

have to be used in what follows but is included here for

completeness.

Now Eq's. (1.12)-(1.20) completely specify the

gas phase problem except for specification of the reference

ouantities, _ , and the boundary conditions for each

individual problem to be treated.

B. Ouasi-Steady Sphericallv Symmetric Burnine Theory

The most common apnroach to dronlet burnin_ theory

is to assume spherical symmetry. The coordinate system is

shown in Figure la. A snherical fuel droplet is assumed

burning in a stagnant ambient Gas which contains an oxidizer.

Fuel vaporizes and transfers outward to meet the inward

diffusing oxidizer. Reaction takes place at an infinitely thin

spherical sheet, requirinf infinitely fast reaction kinetics.

The process is maintained by the heat release at the spherical

sheet heat source (flame) causinq a temDerature in excess

of the droplet and usually of the ambient temperatures. The

outer ambient boundary conditions are usually considered

to lie at infinity. On either side of the heat source there

laws are incorporated into the statement
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are only either oxidizer and inert or fuel vanor and inert.

Therefore, the reaction must take place at the stoichiometric '

mass feedin_ rate and the mass fraction:_ of fuel and oxidizer

must be zero at the flame.

A brief develooment of the theor}! will be civen

since it is essential to what follows. The differential

equations cenerally use(] to describe this process in the

__as phase are the followinz:

Continuity

SpeciesContinuity

(l.21a)

9vr z _ = l-L
L¢_r

Momentum

(i. 21b)

Enerey

p -+- con._'_.nt
(1.21c)

State

_"_T _
9vr

_r (l.21d)

2 ?T i
(l.21e)
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These equations can be obtained from Eq's. (1.12)-(1.20)

by the following assumptions:

I. Spherical symmetry exists.

t,"2. A steady state exists, is taken as the

droplet lifetime. _r is taken as the

diffusion velocity, _U_, X: , where

is, say, the droplet radius. Then disregard-

ing the initial ignition and heat-up processes

the assumption is K )) _ ; the diffusion

time is very much shorter than the droplet

lifetime.

3. Gas speeds are very much less than the speed

of sound. Take _:___where "_p" is

a typical temperature of the system and El:

is then approximately a sound speed. P_essure

then becomes automatically referred to a typical

pressure in the system. Then from E_s. (1.15)

and (1.16) it can be seen that if the Reynolds

number based on the speed of sound in sufficiently

large, the pressure is essentially constant

throughout the film.

A
_. _ _O and the reference transport properties

are taken at some average film value.

The reference quantities in Eqs. (l.21a - c) are chosen to be

,'=. t. o l,lr = ['/'9'= ¢_" ,..

- = T_
r
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The boundary conditions to complete the problem specificatiQn

are usually written under the following additional assumptions:

5. The flame zone is collapsed to an infinitely thin

spherical sheet heat source.

6. The liquid is at a uniform temperature

and in a steady state.

7. As a consequence of 6 all heat transferred to

the droplet goes toward vaporization, not

liquid heat-up.

8. The liquid-gas interface is in equilibrium.

That is, the partial pressure of the fuel

vapor immediately adjacent to the liquid

corresponds to the equilibrium saturated

vapor pressure of the fuel at the liquid

temperature I .

9. The ratio of liquid to gas density at the

interface is very large so that the gas

velocity is much greater than the liquid

surface regression velocity.

i0. Le = 1

Then in dimensionless form the boundary conditions at the

surface become

Heat Transfer at Droplet Surface

AT) (i 22 a)
% "-ft.

i. This assumes infinitely fast evaporation kinetics.
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Mas,§ Transfer at Droplet Surface

:[,,
a,,- 1_

Boundary Values

T(q') -- z-

At the flame

Stoichiometric Condlt ion

Heat Generation

,',_ _;j. a. a.,,-/,_ o0_. $;_,

Boundary Values

T(rf) = T 4 is continuous

¥,,_,i _,,, Xo<%)- o

V '),,.iF is continuous

(1.22 b)

(1.22 c)

(1.23 a)

(1.23 b)

(1.23 c)

At infinity

(1.24)

Eqls. (1.22 b) and (1.23 a) are obtained by evaluating

Eq. (1.14) at the surface and flame respectively and noting

that at the surface the only species which flows is the fuel



- 15 -

so that VF= V and by noting that at the flame Yv-Yo = O . '

The heat of reaction in Eq. (1.23 b) is independent of T 9

because of the equality of specific heats assumption and

is therefore known for any particular fuel.

This formulation of the problem is well known

although the general approach here is a bit different than

published previously. For the steady state problem it is

overrestricted in the number of assumptions actually needed

to obtain a rather simple solution. For instance assumptions

2 , 5 , and 10 of Section A and assumptions 4 , 5 , 6 , 7 ,

8 , and 9 of this section have been individually or

collectively relaxed in the literature. As previously

mentioned, reviews of this literature have been published

(i, 2). However, much of the essential physics for a great

number of problems is contained in this formulation and in

view of the physics left out (spherical symmetry cannot

exist) it is considered that refinements are somewhat futile.

In the unsteady state some of these assumptions become essential

for analytical treatment, but again it will be found that

some may be relaxed.

Eq_. (1.21) subject to Eq_ (1.22)-(1.24) may be

integrated to yield the following well known results:

-- 1" _ I

I+ "1"o,.

(1.25 a)
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*p,= e, ](,l+B)

t" I._

r_ (J+s)

On the fuel side of the flame

| I

T= _¥ _. e -,

and on the oxidizer side

_/-)T= +(,

(1.25 b)

(1.25 c)

(1.25 d)

(1.26 a)

(1.26 b)

Eq_. (1.25 a) and 1.25 b) define the conditions

which must hold if a steady state is to exist. They define

the droplet temperature _ if the saturated vapor line

relation is known for the fuel. The formal limit of pure

vaporization is obtained by passing _o_ to zero. Then

T_ : 1 and % , co .

C. Convection and Spherical Symmetry

In actual combustors there is usually a strong

convective field about a burning or vaporizing droplet I. In

such a case the assumption of spherically symmetric burning

in a quiescent atmosphere of infinite extent must completely

break down. However, it is common to use the basic analytical

l. Typical Reynolds numbers for droplets in a rocket engine

are Re <100.
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treatment of the previous section while modifying it in

only one respect; the outer boundary condition is not

cast to infinity. There is no velocity considered tangential

to the droplet surface within the diffusion film and

spherical symmetry is still considered. An empirical

correlation is then used to determine the thickness of the

diffusion film. One such presently accepted relation is

the Ranz and Marshall correlation (5)

^
_ (with convection)

A

N% (stagnant film)

. _'fa 1

Such relations are usually used only for pure vaporization

but may be extended to burning. They can be put into the

form of Nusselt numbers for heat transfer and essentially

are a measure of the quantity r&/_r_-r_ in Eq. (1.25 c).

They have been used with some success in combustor

performance calculations (6, 7).

Such an approach, while conceptually offensive,

no doubt has its practical utility. The Re I/2 term in the

previously cited correlation strongly implies the existence

of a boundary layer, and in _eality there can be no definite

edge to the diffusion film. This will provide a great

deal of trouble if the same concepts are applied in an

extension to the unsteady state where, again, artificial

IO This Reynolds number is based upon the droplet diameter

and, although never stated, should be based on the free

stream quantities (see p. 144).
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constraints will have to be introduced.

Extensions of these concepts into the unsteady .

state have been attempted. Wieber and Mickelsen (8) used

this convective correlation to determine instantaneous

vaporization rates when a droplet was exposed to transverse

acoustic oscillations of the ambient high temperature gas.

Priem and Guentert (9) have used the same concepts to

build a theory of combustion instability in liquid rocket

engines. Two serious objections to these extensions can

be raised: i.) If the periodic variations in the ambient

gas conditions are made transverse to the mean flow over the

droplet or made across a stagnant droplet and if these

oscillations are of sufficiently low amplitude, this cross

flow is a low Reynolds number flow. In view of the above

implication of a boundary layer the functional dependence

of the convective correlation may seriously be in error.

2.) Frequently, the frequencies of oscillation which are

considered are of the order of i000 cps. 1 A calculation of

the diffusion time within such a diffusion film for a

typical droplet (150 microns in diameter, say) in a high

temperature combustor would show that this time is of the

same order of a cycle time. As is well known, when the

characteristic times of two unsteady processes become

i. This is the 0rder of frequencies observed in hlgh

frequency liquid rocket combustion instability.
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commensurate, important unsteady effects may come into

play. These quasi-steady convective correlations completely

break down under such circumstances.

The effects of such unsteadiness and other types

such as droplet heat-up, initial conditions relaxation,

and droplet radius contraction form the subject matter

which follows.

D. Summary

Under appropriate assumptions the basic equations

of fluid mechanics have been written for the gas phase in

a form convenient for all problems to be treated in the

following pages. Th_ common approach to droplet burning and

vaporization theory has been presented. This steady state

theory will be used both as an asymptotic limiting case

in time and as a steady state theory about which time and

space perturbation may be examined. Difficulties to be

encountered in the time dependent treatments will ultimately

result in complete rejection of the spherically symmetry

treatment _,
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CHAPTERII

UNSTEADYANALYSIS OF SIMPLIFIED MODELS

A. Heat-up, Boundary Movement, and Initial Conditions

In Chapter I, E_s. (1.25 a and b) define a certain

liquid temperature which must exist for the system to be in

a steady state. This is the "wet bulb" temperature of the

droplet. It is clear, however, that such a temperature

will not exist in general immediately after droplet formation

in an actual combustor. Obviously, there must be a transient

heat-up period. Simultaneously, the conditions of the gas

film surrounding a droplet are initially not those demanded

by a quasi-steady state solution. There must therefore be

a period of initial condition relaxation to the steady state

condition. Finally, it is clear that there can never really

be a steady state since the convective field changes as the

droplet changes speed, and the droplet radius always contracts

in time.

The above effects will be discussed with the aid

of the spherically symmetric, convective, stagnant film

model. The problem of droplet heat-up has been treated

before (i, 6) always by assuming a quasi-steady gas film

transient. Apparently this requires that the heat-up time

be much larger than the gas film diffusion time. The

standard treatments are always numerical; however, a quick
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analytical estimate for the characteristic time of heat-up

is obtained in Appendix A. It is obtained under the follow-

inz assumptions:

i. There is no vaporization during heat-up.

2. The Reynolds number between the ambient gas

and droplet is constant during heat-up.

3. The droplet temperature is uniform within

the droplet, implying a very large thermal

conductivity (small diffusion time) or rapid

internal circulation.

Of course, the quasi-steady spherical gas film is assumed.

The result is that

(2.1)

The_ilfirst grouping is a characteristic time, the second is

an effect of the outer radius on the steepness of the

temperature gradient at the droplet surface, and the third

is the effect of the departure of the initial droplet

temperature from the wet bulb temperature. A comparison

of this time will be made with other process times later on.

Consider now the problem where the droplet heat-

up time is very short and the primary unsteadiness is due

to the droplet radius contraction and initial condition

relaxation. Relaxing assumption 2 on p. 12 and taking
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the reference time, f_ , to be of the order of the

droplet lifltime, tf , the differential equations, initial

conditions, and boundary conditions for the spherically

symmetric time dependent problem are

(2.1 a)

(2.1 b)

____r_ _T (2.1 c)

_r-I

T(% ol = To(_

T[rj_),_ 3 = _-

(2.1 d)

(2.2)

(2.3)

3rlr_(,; qz B_ " _I 8.o At
(2._)

where _I is defined by

i_i= _at__ =.9=

For the Lewis number equal to i, the mass fraction equation,

Eq. (2.1 b),is unnecessary; however, consideration of this

equation and of other subsidiary conditions would have to
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be made for Le _ i . In particular there would be no

justification for assuming _ to be constant in time in

Eq. (2.3).

It is assumed that this non-linear set of equations

of the parabolic type is well-posed under the imposed

conditions, E_s. (2.2) - (2.4). Note that since a total

derivative appears at a constant temperature surface in

Eq. (2.4), this is a non-linear boundary condition.

Briefly reviewing, what is in essence usually done

to this set of equations is to consider all derivatives of

order unity and consider K large. This assumes the

ratio of a typical time in the problem, say the droplet
7

lifetime, to a typical diffusion time is very large. Then

all the terms containing time derivatives are neglected.

Thus, from Eq. (2.1 a) _ is constant in r and Eq. (2.1 c)

becomes an ordinary differential equation for T which may

be integrated subject to Eqls. (2.2). Eq. (2.4) may be

used to find the interface position as a function of time.

Another approach is to consider slow evaporation so that

the convective term in Eq. (2.1 c) disappears. Then

essentially the heat equation remains, but with a variable

density which cannot be assumed constant unless Eq. (2.1 d)

is abandoned. If the time derivative is also dropped

here, essentially Laplace's equation remains and may be

immediately integrated as before.
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AS pointed out by several investigators (i0, ii),

theme are many things wrong with this approach. First,

the problem is solved without reference to initial conditions

and the solution is able to satisfy only the steadystate

conditions. Secondly, if the heat equation without the

convective term is adopted, account is not given to important

density variations and outward convective effects that occur

in high temperature work. Finally, if Laplace's equation

is adopted for the problem description and r_ cast to

infinity, the droplet vapor content of the surroundings

decreases from an infinite to a smaller infinite value as

the droplet vaporizes.

Concerning the work which has been done on this

and other related problems, Fuchs (I0) obtained typical

correction factors to describe the relaxation of the initial

condition to the quasi-steady condition and the error

made in the droplet lifetime due to the time dependence

introduced by the contracting radius. This was, however_

carried out for the heat equation and by approximate

methods. Also, only one type of initial condition was

considered, T O = i.

An exact solution for the heat equation under very

general conditions of moving boundaries has been obtained

by Kolodner (12). The solution is in the form of

non-linear integr_-differential equation for the interface

position, if this is any simplification. The solution is
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based on the existence of the fundamental solution

to the heat equation and uniqueness of the solution has

been shown. In certain cases this work lends uniqueness

to a great many other solutions as appear, for example,

in Carslaw and Jaeger's work (13). For instance, in

Neumann's problem of linear flow there is

a liquid initially at temperature T and a solid in_tially

at A _O which freezes into the liquid_ the interface

position given by _ . Stating a condition that the

temperature at x = 0 is constant for all time, a solution

may be found where the interface position i8 given as

X/t 1/2 = constant. Uniqueness for the problem is shown by

Kolodner's work. This is a "similar" type solution and

may be applied to many other problems with and without

the convective term. Kirkaldy (ii) has obtained an

exact solution to the spherical problem with the

convective term included but under the assumption that

is constant. It is found that if _l_ll_ is constant

the equation will reduce to an ordinary differential

equation in the independent variable _ = r/%V_ The

objection here is that _is procedure will not work

for evaporation, but only condensation, because of the

finiteness of _ at _m O • Also, density being constant

is an intolerable assumption in the present work_ finally

these similar type solutions are only able to satisfy very

specialized initial conditions.
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There is one other interesting result obtained

from these exact solutions. As expected, in a great many

cases an appropriate expansion of the solution in a series

will yield the quasi-steady solution as a leading term
i

with the remaining terms important only near _ = O .

Also, the interface motion is many times well approximated

(sometimes exactly) by the quasi-steady solution. However,

in the absence of an exact solution to the problem of

interest, it still remains to investigate the error

introduced by the quasi-steady theory. When _ 7) | it _

is natural to attempt a regular expansion in the parameter_ .

However, the time derivatives are lost in the leading

order set of differential equations. It is clear that

this is a singular perturbation problem with wild

behavior taking place near _" " O • What is then usually

done is to attempt fo find an appropriate scale

transformation of the independent and possibly dependent

variables to retain the time derivatives in the leading

order system of equations while, hopefully, obtaining a

system amenable to exact analysis. Such a t_ansformation

has not been found.

Therefore, in Appendix A an alternate procedure

has been adopted. The regular expansion in %-- is carried
K

out which yields a correction factor to the droplet radius q_
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to account for non=steady effects of the changing drop-

let size. It is valid only after a sufficient time has

elapsed for relaxation of the initial conditions. Then

under an admittedly inconsistent assumption that _[5{)_f(_O)

for all time a method developed by Frish (13) can be

adapted to find a typical time estimate for the relaxation

of the initial conditions. The correction factor obtained

for the droplet radius is well behaved and, of course, of

order I-L for only two cases: i.) The droplet must

vaporize faster than the quasi-steady rate ( C%2 decreasing

linearly in time for _ [C_ constant in time), and 2.) _

cannot be cast to infinity. Thus, the correction is valid

only for sufficiently high cuasi-steady mass vaporization

rates (see Eq. (A-19) of Appendix A). The estimate for

the time required for initial condition relaxation is given

by

i (2.5)

where _ = T (_; - T_ _ (J)
"_-T_ ' _ is the quasi-steady

distribution obtainable from Eq. (1.26a), and _o
is the

initial distribution at t=_. This integral has been

and is tabulated in
numerically evaluated for _6_I
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Table i. Again, an important observation is that _ cannot

be cast to infinity or the integral will blow up. More will

be said concerning this in Section B of this chapter.

For convenience Appendix A uses f_ as the quasi-

steady droplet lifetime and is repeated here for convenience

for r_/_ constant.

(2.7)

The typical gas phase diffusion time is

d;{. ---- _

Therefore, the time ratios of interest are

,v

The first ratio is obtained from Eqls. (2.8) and (2.1)

The result is primarily dependent upon the actual level

of the wet bulb temperature. For volatile fuels or liquid

oxygen the hope that ¢ 4_ [ is usually satisfied quite well

for sufficiently high combustion temperatures. For example,

take the case of ethyl alcohol burning with liquid oxygen

in a combustor at 150 psia, Approximately for the alcohol,

Z"i ,._ /0 "1
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At a nominal Reynolds number of 40 based on the droplet

diameter

_3 "-" /0"3

However, these numbers are heavily dependent on the actual

chamber gas density and droplet Reynolds number. For any

application a careful check should be made. In deriving

the heat-up time the assumption was made that essentially

_t /ta > > | . It is seen that while in this particular

example the assumption may be reasonable, it may not be

in other examples. However, it is believed that the order

of magnitude of all the results is essentially predicted

by the above developments even in view of many rough and

sometimes inconsistent assumptions. Also, the dependences

of these time ratios upon system parameter changes should

be reasonably correct. The analysis above and in ApDendix A

attempts to separate effects although in reality the problem

is a combined one, all processes taking place concurrently.

A further time ratio of interest is the liquid

diffusion time to gas phase diffusion time; this will be

reasonably important in the investigation of periodic

solutions to the burnin_ probiem. In the present example

Note then that in this example assumption 3 on p. 21

is violated unless there is internal droplet circulation.
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Note finally, for a smoothly changing convective field

the unsteadiness due to a change in the effective _f

will also only be of order _ if the change takes place

over a droplet lifetime.

The conclusions to be drawn are that in many

pratical situations the heat-up time and initial condition

relaxation times take place within a small fraction of

the droplet lifetime. The unsteadiness due to droplet

radius contraction is an effect of order % J_ and

may often be considered negligible. Therefore, it may

be reasonable to investigate the existence of a

periodic solution to the burning problem when the ambient

gas is undergoing acoustic oscillations while using

the quasi-steady solution as the steady state solution

and be assured that some measure of reality will be

contained in the results.

B. A Difficulty in the Simple Approaches

It will be recalled that in two cases already

treated r_ could not be cast to infinity without the

results becoming meaningless. It should be observed

that even in the quasi-steady treatment the ability

to consider the outer boundary at infinity is a special

property of spherical symmetry. Cylindrical symmetry

(a cylindrical liquid surface) or a plane model would
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result in a zero burning or vaporization rate if the

outer boundary were cast to infinity I. In the time

depengent case even spherically symmetric models now give
!

trouble. This trouble will again appear when a periodic

solution is attempted for the spherically symmetric

model; of course, it will also appear for the plane model.

Therefore, somewhat artifical conditions must be imposed

concerning this boundary in order to obtain well-posed

problems.

This difficulty is a direct result of neglecting

the actual convective field which must exist either by

natural or forced convection; part of the physics is left

out. It will be seen that even a plane liquid surface

will yield a well-posed problem in the steady state

through the well known phenomena of a boundary layer if

proper account is taken of convection. The time dependent

problem for any shape can also become well-posed if

this part of the physics is included. Of course, proper

treatment requires the abandonment of certain geometrical

symmetries.

Still, certain interesting and informative results

may be gained through the simpler geometries under

I. Cylindrical symmetry would result in _ m _vr _ I/_ _

where rc is the outer boundary position specification.

For a plane model _ = _v _ VK¢.
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artificial boundary conditions. Therefore, before

turning to the more complex problem some more attention

will be given to the models with simple geometrical

symmetry.

C. Periodic Solutions to Plane and Spherically Symmetric

Models

It will now be considered that a well-defined

steady state burning or vaporization process exists. That

is, an infinite time has elapsed since the initial

transients have started and the droplet or liquid

surface does not contract in time. Section A of the

chapter has attempted to evaluate the mathematically

asymptotic sense in which such conditions may be

fulfilled. Now it is assumed that acoustic oscillations

of circular frequency g_@ are taking place in the

ambient gas and an attempt will be made to find a solution

of this same frequency to the burning problem. A first

variation about the steady state will be considered;

amplitudes will be arbitrarily small so that the perturbation

problem will be linear in the perturbation amplitudes.

With the introduction of a new characteristic

time, %/00 _ , a further criteria to be introduced is

that t__ >_| so that the interface position

moves negligibly far in one cycle. This is somewhat

\
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equivalent to the statement _ >> _ since effects of

frequency on the diffusion field will not be expected

until _ becomes of the order of I I _ _;_ •

It is best, therefore, to consider this as a "pourous

plue" or "pourous sphere" problem. That is, the liquid

is fed to the surface of a pourous metal of fixed

dimensions at the appropriate mass flow rate to allow

the liquid to just comnletely wet the nlu_ surface

at all times. The liquid body thus has a fixed

dimension for all time. For real probler_,s the asymptotic

sense to which this is valid has _ust been _iven above.

This is, in reality, a nearly neriodic phenomena which

is forced to be periodic in the limit. It is further

assumed that in the unsteady state, no wave propagation

phenomena is present in the diffusion film. That is, the

cycle time is very lon_ compared to the wave travel time

through the film.

Consideration will be civen to two nroblems.

The first will be the influence of neriodic oscillations

on the vanorization rate from a plane licuid surface. As

mentioned before, the outer edge of the diffusion film

even in the steady state must be specified for this

problem. An artificial boundary condition is therefore

introduced; it is also continued into the unsteady

problem where it is assumed that this nosition
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does not vary in time. This outer boundary may be

roughly interpreted as a flame, edge of a vaporization

"boundary layer", or some sort of artificial mass absorbing

and releasing, heat releasing surface. If proper account

would be taken of convection it is obvious that such a

boundary would probably move in time. However, the plane

symmetry, essential to analytic simplicity, would be lost.

The oscillations at the edge of the film will not necessarily

betaken as isentropic since they are oscillations which

in a real case would exist still inside of a diffusion

film. The second problem is concerned with periodic

oscillations imposed "at infinity" over a burning droplet

with spherical symmetry. Here a well defined flame boundary

exists and it is initially hoped that a well-posed

problem will emerge. No convection is considered, and

the oscillations at infinity must be isentropic since

no diffusion is present in a uniform field.

Consider first the plane problem; the coordinate

system is shown in Figure lb. All of the assumptions

pertinent to the development of the spherical model in

Chapter 1 are retained except that plane symmetry

replaces spherical symmetry. The steady state solution

is developed in Appendix B, as well as the periodic

solution. A slight modification in the transport property

law is used here as compared with assumption 4 on p. 12

of Chapter I. Although an average value is used for the
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steady state, this average value is allowed to vary

in time under perturbation. Thus, the average value is

assumed to vary as

Then three particular problems are discussed.

The first solves the problem where the temperature

perturbation at the liquid surface is zero. This is the

asymptotic limit of an infinite slope of the fuel partial

pressure vs. temperature curve at the sa_ration line.

It still retains the concept of an equilibrium boundary.

Under such a situation there is no unsteady heat

transfer to the liquid going towards heat-up rather than

vaporization, and, also, the mass fraction equation is

uncoupled from the energy equation. See Appendix B for

the details. The second problem relaxes the above assumption

When heat transfer becomes important to the liquid as far

as heat-up is concerned new parameters which enter are the

ratio of the gas phase diffusion time to the liquid phase

diffusion time and the thermal conductivity ratio between

the gas and liquid. For the example of Section A of

this chapter these numbers are approximately 10 -2 and 1/2,

respectively. The third problem is the relaxation of the

assumption of an equilibrium boundary. It is clear and

well known that it is possible that mass may not be

able to vaporize as fast as is demanded by the diffusion
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field calculation based upon an equilibrium boundary

condition. What is essentially assumed normally is that

the kinetics of evaporation are much faster than the

diffusion speed. Evaporation kinetics have been recently

reviewed (15) and will not be discussed at length here.

It is sufficient to say that the driving force is the

difference between the actual partial pressure of the

vaporizing substance above the liquid and the equilibrium

partial pressure at the droplet temperature. It is

governed by an imbalance in the collision processes

at the surface; that is, the emitted molecules exceed

in rate those incident on the surface. Since this is a

collision process, other parameters must enter, e.g.,

the molecular weight of the vaporizing substance and the

"sticking probability" or "evaporation coefficient".

However, to treat this problem a rather simple-minded

assumption was used. Only perturbations in the mass

fraction difference were considered. Therefore, the

perturbation in the mass vaporization rate is

M_ (°) -- _ (_F equilibrium - _ actual)

is calculated on the basis of a postulated steady state

mass fraction drop.

The results for the plane model are summarized

in Figures 2 - 6.. These figures show the ratio of the

instantaneous vaporization rate perturbation to the
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product of the steady state rate and the instantaneous

pressure perturbation. -This quantity is plotted vs. a

frequency nondimensionalized by the film diffusion time,

_ A C_ _*/ _ _ . AS expected, significant

response occurs when e4) becomes 0 EI_ .

Even in view of the extreme simplicity of this

model the results show much of the physics involved in

unsteady diffusion processes; many of the qualitative

features are expected to carry over into a more complex

model in Chapters III and IV. Figures 2-4 show the results

for the first problem mentioned above. At the low

frequency end the quasi-steady result is recovered. That

is, the phase obviously goes to zero and the magnitude

is O[¥-J ]. This magnitude is extremely important

in applications. It is of the order of the temperature

perturbation which is depressed from the order of the

pressure perturbation by _-l, approximately. It is due

to the fact that the quasi-steady state is dependent

upon temperature sensitive functions, e.g., B and _ .

For no convection the vaporization rate is almost pressure

independent. As the frequency rises the temperature gradient

at the surface increases and undergoes a maximum. This

is characteristic of diffusion processes in the unsteady

state. For instance, if the temperature were oscillated

at one end of a solid slab the temperature gradient at
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the other end would undergo a maximum in a certain

frequency range. However, this gradient would go

to zero in the limit of infinite frequency; this

is not the case for a compressible fluid. When the

frequency becomes high enough a phenomenon known as

the high frequency boundary layer comes into being.

When a gas is compressed it attempts to heat-up instan-

taneously. However, if a boundary is maintained at

a particular temperature (_r(o)---_ = O_ heat

diffusion must take place to smooth out the temperature

field. At sufficiently low frequencies this can occur.

But when the cycle time becomesshorter than the diffusion

time this distribution cannot take place. Therefore,

steep gradients take place near the non-natural boundary

condition and diffusion is absent in the main part of

the field. In fact, the heat transfer goes to infinity

as the square root of frequency and the phase goes to IF/4 .

The analytical result of a high frequency analysis is

that for A = 0

(2.7)

The details of this analysis are not presented since

they are a simplification of high frequency techniques

1
to be used later on. It is important to note that

except in the transition region from low to high frequency

i. High frequency limits in this work are under the constraint

that the wave propagation time in the film is still short

compared to the cycle time. See p. 108.
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behavior the response function is greater in magnitude

for higher steady state mass flows. Another important

result is that the phase is restricted within a narrow

band and that a significant component of the response

is i__nnphase with the pressure.

Figure 5 shows the effect of considering the

liquid heat transfer and temperature perturbation. The

case with _/_ _ = _-- and b = 151 remains

within +5% of the case where these parameters are

zero and infinity respectively. Therefore_ this

curve can also be used to compare with Figure 4 for the

effect of _ and _ . It is seen that an area of

additional response occurs for the rather severe condition

_l_ _ = _ • This is apparently a coupling with

the characteristic time of the liquid diffusion process.

Over the main portion of the curve,however, the

qualitative behavior is the same. Again, the vaporization

rate perturbation will go to infinity as the square root

of frequency but depressed in level since some heat

transfer goes to the liquid.

Considerin_ the effect of _ and _

is important only at very low frequency since it is an

indicator of a temperature sensitive function. An increase

ig b is the dimensionless slope of the fuel mass fraction

vs temperature curve at the saturation line. See

Appendix B.
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in _ ,however, generally raises the response by at least

the percentage of increase in _ over the full range

of frequency. Also, note an important effect in the high

frequency limit, Eq. (2.7), directly showing the effect

of compression work heating the gas.

The effect of finite evaporation kinetics is

shown in Figure 6. For a rather severe but probable 10%

mass fraction drop in the steady state the qualitative

features remain the same, but, of course, the magnitude

is depressed. Here, however, the "infinity" at high

frequency will only appear if _--L is held identically

zero (b = o0). For if C_" L # 0 some heat transfer

must go to the liquid as _r_ for w_. If _L

and consequently the equilibrium value of _(0)

were to remain finite then the actual value of _# (0)

would have to go as 4-_ to maintain the required

vaporization rate perturbation. In such a case, however

J

F (0) would go as _4) saying the mass transfer rate

was going as _ ; this is an obvious impossibility. On

the other hard, if O- L were to go to infinity as _-_

all heat transfer would go to the liquid as u_ which

cannot be provided.

The true behavior must be that _7"L adjusts

so that the component of heat transfer of 0[_-] is

just absorbed by the liquid. What is left is a finite

perturbation in the vaporization rate of OK]. These



-- 4± --

problems will only appear, however, in the very high

frequency range where other assumptions which have been

made will also break down. It appears sufficient to say

that over a reasonably wide frequency range ( 0 _ _ _ 40 )

the qualitative behavior of the vaporization rate

response is given correctly by neglecting evaporation

kinetics.

One of the primary results of the plane model,

then, is an estimate of the validity of certain

simplifying assumptions. From now on the assumptions that

b = _ (O-L=O) and _(O)actual = _g(O)equilibriu m will be made

with no further comment. They will become essential

for simplified analytical treatment of more complex

models.

It is now desirable to attempt to obtain a

solution to the perturbed spherically symmetric problem

in the hope that a well-defined f]ame boundary condition

will emerge. In fact, a prime purpose is to find the

perturbation in the mass burning rate at the flame since

it may have important application to the field of

unstable combustion. For that matter it is also

probable that the vaporization rate perturbation is

significant in this respect. Return, then, to the

assumptions listed in Chapter I pertinent to the

spherically symmetric model. Consider also the comments

on the frequency level at the beginning of the discussion
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of the nlane model. One further remark is no_7necessarv;

while the collansed [lame model mawrbe aor_licable in the

steady state, it may break down in the unsteady state.

It must be further assumed that cycle times are much lon_er

than typical chemical kinetics times. In fact, for the

steady state model the assumption is that the chemical

times are much shorter than diffusion times. Here, therefore,

a restriction must exist on how short the cycle times can

be made in relation to the diffusion times. The validitv

of the collapsed flame zone model will be discussed more

fully for a more realistic geometrical confi_uration in

Chapter III.

Appendix C contains the analytical develonment

of the perturbed spherically symmetric model. Rather

commonly, an expansion of the solution to ueriodic diffusion

problems in powers of frequency is a convereent one. In fact,

this was true for the plane model. It is shown, however,

that this Procedure diverces for the spherically symmetric

model if the outer boundary is cast to infinity. In Section B

of this chapter the reason for this was nointed out. In

reality, no physically realistic sohericallv symmetric

pressure oscillation can be provided unless there is some

kind of snhericallv symmetric mass source and sink niston-

like boundary. This is therefore not a well-posed problem

for arbitrary frequency. However, the asymptotic case of

hish frequency can be treated because of the nhenomenon of

the high frequency boundary layer. If the condition at in-

finity is a natural one, i.e., an isentronic oscillation, a
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solution will exist in an asymptotic sense. Infinity

is practically reached at a short distance from boundaries

diffusion becomes localized within distances of O[_/_

of boundaries, the outermost boundary here being the flame.

The details of this high frequency analysis are also contained

in Appendix C. From this treatment it is also clear how

the high frequency analysis was constructed for the plane

model. Even a more detailed description will be given

in Chapter IV.

The result in that once again the vaporization

rate perturbation goes to infinity as the square root of frequency.

- -- _ + 0['3 (2.8)

This should obviously be compared with Eq. (2.7). On the

other hand an extremely striking result is that the flame

movement and mass consumption rate perturbations remain

finite i___nth____elimit of infinite frequency. Also, depending

upon the sign, which has not been closely checked, this

perturbation is real. That is, it is either in or 180 °

out of phase with the pressure.

The reason this finite behavior occurs is that

the compression sets up a convective field which is natural

for the boundary (flame); that is_ the boundary conditions

are automatically satisfied. The flame movement occurs

I\
\
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(in the limit of infinite frequency) solely because the

field is compressed. Note that this burning rate

perturbation is made of three components: i.) that due

to an increase in the mass fraction gradient, 2.) the flame

movement sweeping out the steady state mass flow, and 3.)

the flame movement contractinK the surface area. It is

clear why the burning rate was not investigated with the

plane model. It would have become infinite as q-_ since

the "flame" boundary was held stationary, a non-natural

condition.

Briefly reviewing, with the aid of quite simple

models under rather artificial boundary conditions some

interesting results have been obtained concerning periodic

oscillations of the droplet burning configuration. The

physics contained in the results must in some degree

carry over to a more complex model of the burning process.

Therefore, encouraged by these results it remains to

construct this more realistic model.

D. Summary

Conditions have been established whereby it is

reasonable to investigate the existence of periodic solutions

to the droplet burning problem. These conditions also

evaluate the validity of the quasi-steady assumption

in steady state droplet burning theory. Difficulties in
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the mathematical formulation of the unsteady burning

problem have been pointed out. Finally, two geometrically

simple configurations have been analysed and periodic

solutions obtained under certain conditions. The physics

contained in the results are sufficiently interesting to

warrant the attempt at a solution to a more realistic

and well-posed problem.
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CHAPTERIII

A CLASS OF CONVECTIVEDROPLETBURNINGPROBLEMS:

THE STEADY STATE

L

A. Statement of the Problem

.,, J

In view of the difficulties encountered with

simplified geometries as far as realistic results are

concerned it is desirable to return to the full Navier-

Stokes problem. In fact, consider a stationary liquid fuel

body of arbitrary shape immersed in a uniform free stream

flowing at a velocity, _J(_o. The free stream contains

an oxidizer of uniform mass fraction, _oo o. A steady

state is established whereby inward flowing and diffusing

oxidizer meets outward flowing fuel at a thin flame

zone which is wrapped about the leading edge of the body.

The question of what is meant by a steady state has

previously been discussed. The question of whether or

not a flame can exist from the forward stagnation point

will be discussed in Section C. It is desired to solve

this problem for the flow field in the vicinity of the liquid

body and to determine local vaporization and burning rates.

Then consideration will be given to a perturbed problem

by introducing a travellingisentropic sound wave in the

free stream. This wave of arbitrarily small amplitude will

travel parallel to the free stream flow and will be

periodic in space and time. It will be assumed that the

liquid shape does not oscillate in time.
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The case of Reynolds number much _reater than

one will be treated. In actual combustors this is the

case usually encountered during most of a droplet's life-

time. It must be recognized, however, that the asymptotic

procedure which will be used for large Reynolds number

is going to be pushed quite far concerning a practical

use. That is, it is hoped that reasonable quantitative

information is given for Re as low as i0. The case of

very large Re does not exist in practice either because

droplet shattering will occur or because drag always keeps

the relative speed between the ambient gas and droplet

reasonably comparable.

It is clear that previous geometrical symmetry

in two dimensions is lost. However, it will be assumed

that the liquid body is either axi-symmetric at zero

angle of attack or that the body is symmetric about an

axis plane at zero angle of attack.

The free stream Mach number is to be small

enough such that its square is negligible compared to

unity. However, since strong temperature differences

will necessarily appear, the steady state flow will not

be considered incompressible.

B. Differential Equations and Boundary Conditions

Basically following Van Dyke (16), an intrinsic

orthogonal coordinate system shown in Figure Ic is adopted.
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The coordinate runninK along the liquid body from the

forward stagnation point is s with corresponding velocity

u. The normal to s is n with correspondin_ velocity v.

The reference quantities of Chapter 1 are as follows:

Xr-- _r = _-_p_

Therefore, K = I, Mr is the actual free stream Mach

number)M) and Re is the Reynolds number based upon

droplet nose radius. AlthouKh this chapter is primarily

concerned with the steady state, the time dependence and

perturbation equationswill be developed here in order to

avoid repetition in Chapter IV. Then with _-I for

axi-symmetric flow or _ = O for two-dimensional

flow Eq_. (1.12)-(1.20) are written by usual vector

relations where Aw is the body curvature

Continuity

(3.1)

Species Continuity

Re

(3.2)
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Re

Lon$itudinal Momentum

+ _ _vu._ + _ I + P_ I --

r- _-n c.a_O

_( ) I_"
n

u, (r +n_ e)s_

(3.3)

T_ansvePse Momentum

t+_r' n %-e /W n

5

(3._)
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Energy

v-F_ r_(r-,) ups f vp_
I +/r'n I+/r'n

(3.5)

Dissipation Function

z _.__._ f,4,'.,._.e)_

(3.6)

Longitudinal Diffusion

/_e Sc I÷/_n (3,7)
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Transverse Diffusion

State

YM'p = £T

Transport Property Law

(3.8)

(3.9)

(3.10)

Note in Eq. (3.10) that with /ar; =_

able average law should result since

in general.

a quite reason-

_T_ _Tf_ _

must be

The boundary conditions far away from the body

vCs,_,±) = £ VCs,t)

TCs .o t) = I 'r &_(£_tj

yM _

(3.11a)

(3.115)

(3.11c)

(3.11d)

(3.11e)

(3.11f)

The parts without E are the steady state quantities; those

including _ are perturbation quantities about the steady

state, E<< i • The perturbation functionsare yet to be
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defined and constructed.

The flame (sheet heat source) is defined as the

location where inward flowing oxidizer meets outward

flowing fuel in stoichiometric proportions and where

the fuel and oxidizer mass fractions are zero. Since this

is a pure heat source, continuity in mass flow, temperature,

and the stress tensor must prevail across this discontinuity.

Therefore, the boundary conditions at the flame which

also define the flame position are

Mass Fraction

Longitudinal Diffusion

Transverse Diffusion

(3.12a)

(3.12b)

Mass Continuit Y

(3.12c)

_ t_)_: ) _V)_ continuous

Normal Stress Continuity

I%

is continuous

(3.12d)

(3.12e)
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Shear Stress Continuity

Temperature Continuity

is continuous (3.12f)

is continuous

Lon$itudinal }{eat Source

(3.12g)

Transverse Heat Source

(3.12h)

- T r_ t P_..c I = 0

The following boundary conditions will be

imposed at the liquid surface:

(3.12i)

Velocity

uJ,s,o _ _= o

Temperature

T (s o, _:) = = constant

Mass Flow

ge Sc w : _,,,v,,,Yr,,,,-_'_,,,,v= rn_ (_'r,,,,-I1

(3.13a)

(3.13b)

(3.13c)

(3.13d)
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Mass Fraction

(3.13e)

Eq. (3.13a) contains the no slip condition at the wall.

This can, of course, only occur if the liquid viscosity

is sufficiently high relative to that of the gas. There

must be some slip velocity, in reality. However, the

asymptotic procedure to be used in the solution of the

problem will demand that u changes of order unity from

the free stream to the boundary. This will, of course,

always occur in the vicinity of the stagnation point.

Therefore, other asymptotic procdures as used, for

example, in liquid flow over gas bubbles (17) where the

slip velocity is large must fail here. It is probably

best to consider the no-slip condition as a "zeroth

order" condition in an appropriate expansion in the

slip velocity characterized by a small parameter.

The temperature condition, Eq. (3.13b), has

been discussed at length before. These previous discussions

also explain the mass fraction condition, Eq. (3.13e).

The mass flow condition, Eqs. (3.13c) and 3.13d), are

merely the transverse diffusion and heat transfer conditions

at the wall. Note VFvv: V_ v since the inert

cannot move in an absolute sense at the wall.

Eq's. (3.1)-(3.13) represent the differential
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equations, algebraic conditions, and boundary conditions

which specify the problem. Except for specification

of the perturbation quantities in the free stream it

is assumed that the system will admit a solution. The

solution will be obtained by the method of inner and

outer expansions. For Re >>I it is presently believed

correct that the expansion of any quantity,

in the form

= (Snt)
('--0

will yield the proper outer or essentially inviscid set

of equations. The zeroth order yields the Euler equations

and effects of viscosity and diffusion do not appear until

second order. This set cannot, of course, satisfy

the no slip boundary condition at the wall and still

satisfy all the boundary conditions in the free stream

since the highest derivative in Eq. (3.3) is lost in the

zeroth order term. Indeed even the flame cannot exist

in this region since no diffusion is present in the

leading order terms. There must, therefore, exist a

region of rapid transition in a layer close to the

body, the inner region or boundary layer. For changes

in u of order i through this layer it is presently

believed correct that an expansion of the form
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.. (s _.,-t)
(3.14)

will yield the proper equations for the inner region.

The time dependence in the problem is assumed independent

of _/_ so that it may always be included in th_ leadinK

order set of equations. Substitutin_ Eq's. (3.14) into

Eq's. (3.1)-(3.10) there results for the zeroth order

system (the superscript (°) is left off for clarity) in

the inner region

A _'% #%

rt £_ + C,"Jf_)s ÷ (''_' ?v) =0
(3.15a)

(3.15b)

(3.15c)

pn =0

p,.-.

(3.15d)

(3.15e)
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Z

(3.15f),

= u.__ (3.15g)

_v YI,_ - _ vl_ (3.15h)

MZp = 9q- (3.15i)

A

: T (3.15j)

As pointed out by Van Dyke (16), _z will not appear

until second order.

Eq's. (3.15) are nothing more than the equations

for the Prandtl boundary layer. Under the previous

assumption that M 2 << i, _ is negligible and the term

involving ups in Eq. (3.15e) may be dropped. Terms

involving the pressure are always confusing regarding this

point since M 2 appears in the state equation, Eq. (3.15i).

This should become clearer later on. The term involving

#

p_ is kept since it will be later found O[,/_] in

the problem of interest.

The surface boundary conditions Eq's. (3.13),

become to zeroth order

/

 [sot) o
' ' (3.16a)
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T( s o_j = Z- (3.16b_

(3.16c)

P,- -/-_.¢s o,-_) ='r_w/B,_
(3.16d)

y_ (s,o,-_)= "f'_w Is t)
(3.16e)

It is clear that the flame must lie in this

inner region since diffusion is present; the flame boundary

conditions, Eq's. (3.12), become to zeroth order

(3.17a)

(3.17b)

U- 1 ]-" continuous (3.17c)

T_I - h) + _ '%/--_ (3.17d)

The expansion of Eq. (3.12b) is superfluous; _v continuous

and Eq. (3.12h) are not shown here because they represent

higher order quantities in I/_ in the vector relations

used to obtain them.
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To patch the inner and outer expansions in the

leading orders take an outer quantity _(o)_ (_ _t} and

(o)

t). Then expandrewrite it in inner variables _ (s,_/a_e J

j . Coj
about _ = O to obtain as a leading term _o (_,o,_)

C [oJ

Similarly, an inner quantity is expanded to obtain _6(5_i)

This is the classical boundary layer matching procedure.

Therefore, the patching conditions for the boundary

layer are exactly those given in Eq's.(3.11) except for

Eq. (3.11b) which is automatically satisfied to the

leading order in _/_-_ . Then Eq's.(3.11), (3.15),

(3.16) and (3.17) apparantly specify the boundary layer

problem.

In principle, it is possible to go to higher

orders with this method; that is, corrections may be

obtained to the outer and inner flows and more terms

of the expansion computed. However, for this particular

problem there is a fundamental stumbling block. The

outer inviscid flow being subsonic is elliptic in

nature. For simple geometries the zeroth order solutions

are well known. To solve for the first correction

to this outer flow the boundary layer must be known

over the entire body because of the elliptic nature of

the outer flow. For closed bodies such as a sphere the

expansion procedure to be used to gain such a solution



- 60-

is only asymptotically valid a short distance from

the stagnation point. Also separation will occur. There-

fore, to obtain a reasonable solution to the boundary

layer over the full body is extremely difficult. It

is possible to solve for the effects of loneitudinal

and transverse curvature of the body without reference

to the outer flow correction. However, its elliptic

nature comes in when the effect of the boundary layer

displacement on the outer flow is considered. For

some problems this effect may be negligible; however, here

there is a highly blown boundary layer and there is no

right to expect such a simplification.

The other problem, oreviously mentioned, is

that of obtaining a valid solution over as much of the

leading edge as possible. TheBlasius series (18) may

be used; it is an expansion of the solution in powers of s.

However, it probably is only an asymptotic solution, not

%onvergent in s. Therefore, for s of O_] or only

approximately 60 ° from the forward stagnation the

solution probably would become meaningless. This

difficulty could most likely be circumvented by assuminK,

say, a parabolic body for which convergent series are

known to result for other problems. At any rate, any of

these techniques would become extremely cumbersome even

in the steady state and a different philosophy has been

adopted. Since it is now established that a boundary
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layer pmoblem exists, the difference between different

regions of the body lie primarily in the chan_in 5 nressure

gradient _here ore, two 9roblems will be solved; one

will concern a zero steady state pressure gradient (the

flat plate) and the second will concern the pressure

gradient approapriate for stagnation point flow.

Defore proceedinq with the oolat_on of this

boundary layer problem the validity of the collansed

flame zone model uill be discussed.

C. Validity of the Collapsed Flame Zone Assumption in

High Reynolds Number Flow.

It is clear that ;f chemical reaction rates are

not sufficiently fast the reaction zone may occupy a

tin_ di_ruc_ion zone IC th_ssignificant oortion of _ . , "

occurs the peak te.mnerature of the system must dron and

temperature _radients must decrease. 7]rea]<do,m of the entire

flame may then occur since the heat transfer _oes roughly

as the .peak system tem_erature but reaction rates <lecrea_e....

exponentially in tempe_rature. This c_roblem is critical in the

region near the stagnation <)oint in high velocity flow where

the flame is expected to lie closest to the body surface.

In fact some experimental results by Spalding (19) show

conditions where breakdown occurs at the stagnation point
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and the flame moves into the wake, the droplet then

acting as a flameholder.

An analytical bound on the accuracy of this

assumption has been obtained by Brzustowski (20) for

the spherically symmetric model. It will_ here extended

for the case of convective burning. It is clear that

conditions on the chemical rates will be more stringent

here since the siKnificant parameter is the ratio of

a nominal reaction zone thickness to the flame standoff

distance from the body. For spherically symmetric

burnin_ r_/_ _ is usually O_,O_ • For a boundary

layer _/q = I + O[_/4_] since the boundary layer

thickness is O [_/_e_ and the flame must lie within

the boundary layer.

Assume that reaction takes place nominally in

a distance from _ to _4' . Then in order for the

fuel to burn a kinetic expression must hold in this

zone. Assuming a homogeneous _as phase reaction mechanism

applies and azain that equal molecular weight among

species prevails the fuel consumption rate per unit area

is

/

where n is the overall reaction order, E _ the activation

energy, and _T) the pre-exponential frequency
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factor. Define appropriate average quantities such that

g (rle 'F'0

Now the accuracy of the theory is already limited by

the boundary layer assumption to O[I/_3compared to one.

Therefore, in order for the reaction zone thickness not

to appear

,_ ' L 0 _

must be imposed. In the leadin_ order for _ and _o to

be zero at the flame

YF , Yo _ O['/d_Z]

must be imposed. Thisrenresents a deviation from

Brzutowski's treatment. He assumed that _F and Yo must

be less than or equal to the square of the small parameter

under the argument that combustion could still take

place in an atmosphere where YF and Yo were of the

order of the small parameter. It is maintained here that

this is an improper orderin_ of terms. Since the

parameter itself can be made arbitrarily small the accuracy

of the theory merely requires that a proper expansion

would yield these quantities zero in the leading order.

It is believed, therefore, that Brzustowski was unnecessarily

strict.
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Putting the inequalities into Eq. (3.18)

and defining the dimensionless mass flow rate to be

rY]F _

there results

since _; is O[_'_] in a boundar_layer.
be O[I/_,] since rn _ _, and V

Therefore, rearran_,ing gq. (3.19)

Z n (n_-3

(3.19)

Now m[ must

(3.20)

Converting the density to pressure by the perfect eas

law, Eq. (3.20) becomes

.+_) E'/R*T[R, 7, )
rl

(3.21)

Eq. (3.21) states the minimum pressure below which the

reaction zone thickness will not be sufficiently small

as measured by the small parameter R_ _ in relation to

the diffusion zone thickness. Even in view of the

relaxation of the strict condition of Brzutowski, a

comparison with his result would show the right hand

side of Eq. (3.21) much more strict in the presence

of convection. For example, for n = 2 the effect of
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the small parameter is the fifth power for both theories.

But the spherically symmetric theory would also have

the factor (q_/_#)g on the right hand side. This

is usually O [IO'Z_ • Consequently, the pressure

limitation is increased by O[10] in the convective theory.

If the strict condition of Brzustowski had been employed

here the pressure limitation would have been increased

by O _IO_¢_ over his theory.

As an example, from Steacie (21) take _ _1014cm 3

for n = 2 and also assume

Then

/_-_ = I 0 ,3 Fo;,c

R_ = SO

0_ _ _ O._ _*_-_

Therefore, for a i00/_ dronlet p_ _0 arm. It is

clear that high pressure combustors are implied for the

collapsed flame model in a convective field This is,

of course_ only an extremely rough order of magnitude

estimate. However, it shows that in practical applfcation

the existence of a flame from the forward stagnation point

is open to question unless the pressures are quite high.

From now on it will be assumed that these conditions are

g-mole sec
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met and that still the pressure is sufficiently far from

the critical pressure of the fuel.

There is an important subtlety in the above

treatment. A calculation of the characteristic chemical

kinetic time in the above example would be for _ = 40 atm.

where _ enters since the order of the fuel mass fraction

is I/q/_ in the reaction zone. The diffusion time is

for _ = 10-2 cm.

_5

A comparison of these times does not yield comparable

numbers. Therefore, since this example is known to have

a reasonably thick flame zone from the above theory,

why aren't the times comparable? The reason is that

the velocities of the reactants are extremely high

in the reaction zone.

_F_ V__
_-_-i i • _

Recall

IS

But _ /9_ is 0 Ell R_--_ ] in the reaction

zone. Therefore, Vt/[i_ is 0 _I _ whereas

usually it is O_L/_-_ ] . Consequently, even though
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chemical times may be short, the reactants are moving

quite rapidly and tend to spread out the reaction zone.

The above analysis is for the steady state.

In the unsteady state characterized by a circular frequency

it should be clear that the important quantity

concerning the collapsed flame is the product

Therefore, the cycle time can become quite a bit shorter

than the diffusion time and the collapsed flame assumption

will still hold if it holds in the steady state.

D. Construction of the Free Stream Perturbation Functions

A sound wave traveling parallel to the free stream

flow and liquid body axis will be treated. The primary

perturbation quantity will be chosen as the velocity.

in the free stream if _ is the coordinateTherefore_

measured longitudinally from the forward stagnation point

v
of the body, _ in Eq. (3.11a) would become

(3.22)

where the reference quantities are the same as in Section

B. _ = + i depending on whether the w_ve is traveling

to the left or right. Since the theory will only be

carried out linearly in 6 , any wave shape can be made



- 68 -

by superposition. 1 In particular a standing wave pattern

may be made or a steep front traveling wave such as a

shock wave followed by a decay can be constructed. It

should be made very clear that what is desired is a periodic

solution, one that neither grows nor decays in time. There-

fore, initial conditions are not prescribed. The

relaxation of actual initial conditions to the periodic

according to _£ in ordersolution should follow somewhat

of magnitude. Also, this is a forced oscillation of a

boundary layer and bears no relation to intrinsic boundary

layer instability as investigated experimentally by Toong (22).

Eq. (3.22) is valid as it stands for a flat plate

where s replaces _ since there is no interaction with

the body and the wave. Therefore, for the flat plate the

free stream velocity perturbation is

 JMs t
= e e

(3.23)

For the stagnation point, however, there must be

wave interaction with the body. This wave scattering problem is

solved in Appendix D. The solution of the problem introduces

some further restrictions and gives not only the perturbation

form of the velocity at the stagnation point but the steady

state boundary condition on u(s,0), here written in outer

i • It should be clear that this linear analysis excludes the

the important second order phenomenon of "acoustic

streaming" both in the free stream and boundary layer.
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variables. A restriction on the unsteady problem is that

the body is a sphere; this is not necessary for the steady

state since the boundary condition yields

3
 t%o) = s ÷ Ogs'3

which is, of course, the inviscid velocity for a true

axi-symmetric stagnation point in the limit _= m_D

(3.2_)

The result for the perturbation velocity in the

free stream is

_-= _ S{l+ L-°;.4oulvl+q O['{_uMl_ _" + 0E$2]t e;'_t

(3.25)

It is now required that (_X)_) 2 <4 i ; in view of the

restriction on M 2 already made a restriction is therefore

placed on the magnitude of 6&) . Eq. (3.25) presents a result

which may have been contrary to physical intuition. If

compressibility of the fluid is to be considered (M_0) the

quasi-steady velocity perturbation ( %t = 3/2 s) does not

hold in the vicinity of the blunt stagnation point. The

wave scattering is important.

Now with the perturbation forms for the velocity

constructed _ remains to construct consistent forms for

the state variables. The unsteady Bernoulli Equation may

be employed along the inviscid body streamline.

(3.26)
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For the flat plate this becomes in perturbation form at

the edge of the boundary layer

Integrating Eq. (3.27)

Since the oscillation is isentropic,

(3.27)

(3.28)

and

• ±

(3.29)

For the stagnation point

_= -_M (¥-,} e _t

(3.30)

(3.31)

L_'t"
'= -,_'M e (3.32)

X_ L=t
= -- e (3.33)

M

To extract the pressure gradient perturbation for the

stagnation point use Eq's. (3.25), (3.26), and (3.32) to obtain

l

ps=-_s (s,c_)- _M + _ [&_M(I, (3 34)
Z 9 "
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Finally, as previously stated a homocompositional field

is always considered so that Yo = o.

Note, that Eq_. (3.28) and(3.33) state that

is O_/_] which cannot be neglected in Eq. (3.15e).

This term was left out in Illingworth's (23) work on

the unsteady compressible boundary layer. It was

precisely this term which was important in driving

vaporization rate perturbations to infinity as _ in

the plane and spherically symmetric models; therefore,

its importance is evident.

Since there are new parameters which enter

the convective theory in the unsteady state it is

desirable to gain an idea of the magnitudes involved,

Consider first the frequency, _O=_/_ . In a

boundary layer a nominal thickness is (since this is

how the normal coordinate is stretched) _-_" _'/_4"_e-

Therefore,

and OO is clearly a ratio of a typical diffusion time

transverse to the boundary layer to a cycle time, the

same physical quantity previously encountered in simpler

theories. 1 Consider the _M product.

i.

i

This ms a controversial point in that _>_is more directly
interpreted as a particle transit time. Nevertheless this

interpretation will be adopted because of the behavior in

the high frequency limit of a short diffusion penetration
conpared to the boundary layer thickness.
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where L

Therefore,

is the wavelength of the free stream disturbance.

_aM of 0 [M] implies the dronlet size of 0 [HL_ i.

Note that if pressure had been referred to its

steady state value rather than the dynamic head its order

would have been M compared to i in the unsteady state

while the velocity perturbation is 0 [i] . Therefore,

the effect of the velocity oscillations, neqlected in the

simpler theories, can be expected to be quite important.

The reason for this strange orderin_ is that in the unsteady

state the velocities must propagate at primarily the

sound velocity rather than the free stream velocity if M

is low. Thus, in the unsteady state from the standpoint of

the boundary layer velocity perturbations are raised by an

order of magnitude of I/M compared to what may have been

intuitively believed.

Now attention will be turned to the solution

of the unsteady boundary layer problem. Eq's. (3.15),

(3.16), (3.17), (3.23), (3.25), and (3.28)-(3.33) are

assumed to specify well-posed problems for both the stag-

nation point and flat plate. The steady state will be

treated in the remainder of this chapter; the periodic

solutions will Occupy Chapter IV.

io For the flat plate, of course, "droplet size" must be

interpreted as distance from the leading edge.
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E. The Flat Plate - Steady State

As is usually the case it would appear that the

flat plate case is the easiest to solve. It will be

seen, however, that extreme difficulties arise in the

unsteady case. In fact, the stagnation point being more

difficult in the steady state becomes markedly less

complex than the flat plate in the perturbed problem.

The time dependence will be carried through the

development of the steady state equations so that

independent development will not have to be made. To

obtain the flat plate case from Eq's. (3.15) either

set _ = 1 and r= constant or take the two-dimensional

case _ = 0. Then the governing equations under

previous assumptions are

(3.35a)

(3.35b)

Pr" _" P'_ (3.35c)

(3.35d)

It will be assumed that
I%

_j = 5c = Pr = _ . Introducing

a stream function, _ , and the Howarth-Moore unsteady transform
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(3.36a)

X=S (3.36b)

(3.36c)

= _ (3.36d)

v : -'-_(% _A_) (3.3Se)

continuity, Eq. (3.35a), is identically satisfied.

Eq's. (3.35b)-(3.35d) become

(3.37b)

(3.37c)

Basically following the methodology and nomenclature of

Lam and Rott (24) and introducing the usual boundary layer

variables,

_= /_ X-_X -t" -'_ -C
(3.38)

= and the following perturbation forms
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y-'= zY_-[F(e), _ P(%x) _ ]

L_, (t + ,_ms)

(3.39a)

(3.39b)

the steady state set of equations is first

Eq's. (3.37)

(3.39c)

obtained from

F _II +FF #= 0 (3.40a)

T"+ FT' = o (3.40b)

(3.400)

Further introduoing the unsteady variables

(3.4l)

the perturbation set of equations valid to first order

(or linear) in 6 are obtained from Eq's. (3.37) and (3.39)

F"P- 2;[F+F i

III

-2F(lt-_M)T + _1 F

D z j

(3.42a)

-- - 2 7(l+,_mF')],zF =

PT'(,+ZF M)- 2F%T'
+ Y4MT#+ 2_ _l',q()d-I)T

---PYK' (l+2F@n} -2FP_ Y.'+ Y&M'Y_'

(3.42b)

(3.420)
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The bar superscript on steady state quantities has been

deleted from the previous equations. The surface

boundary conditions, Eq's. (3.16a), become in the steady

state

F (o) =o
(3.43a)

T (o) =

I

h'F(o) - - r(o) (YF,,,,-_)

T' (o) = - F{o) / B_

(3.43b)

(3.430)

(3.43d)

where it is clear that the mass flow at the surface is,

from Eq's. (3.36), (3.38), and (3.39a),

v (oi = - % (o,sJ= - F{ol/zJ_ - _

Therefore, the similar solutions in the variable

will require a vaporization rate decreasin_ as

The flame conditions, Eq's. (3.17), become

¥_.'(%)-,- ',%'(%)=o

f Ii

7'(_-I - r'C%+; + _wrJ(_)---o

(3.44)

;7
t/4_

(3.45a)

(3.45b)

(3.450)

(3.45d) I
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= _ 'I/rz_'¢ o_ _ (_' _ I _, (3.46)

The conditions in the free stream are obtained

from Eq's. (3.11)

F _(ooI = I (3.47a)

yo ---

Consider the solution of this set.

(3.47b)

(3.47c)

The

momentum equation, Eq. (3.40a), is the familiar Blasius

equation and is uncoupled from the enerey and species

continuity equations exceot for the boundary conditions.

For any value of the blowing parameter, F(0) , the solution

is unique and was obtained by Schlicting and Bussmann (2S)

long ago. A complication enters here because the

blowing parameter is coupled with the other two equations

by the surface transfer conditions. For pure vaporization

work has been done by Snalding (26) concerning this

problem. The new steady state modification, to the best

of the author's knowledge, is the existence of a collapsed

flame in this problem. At any rate, the problem is

overdetermined as it stands; _ , yFw , and B_ cannot

all be assigned independently at the surface. There are

eight boundary conditions for a seventh order system,

otherwise. Note also, Yo/j is the actual variable of
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interest if it is Yo_o which is specified at infinity.
"T

Eq's. (3.45a), (3.45b), (3.47c) ,and (3.40c) are unaffected

by this simplific&tion.

As is well known, T = _FI+ b_ and _= c_FJ+_

are integrals of Eq's. (3.40b and c) (the Prandtl integral)

or that T = _̂Y_+5_ is an integral of Eq. (3.40b).

b ! !It is a simple matter to determine the a's, s, c s and

d's through the boundary conditions, Eq's. (3.43), (3.45),

and (3.47). Specifically,

_o = T;-i

F_'-I

=o= vo.lC,-_)

_o : ('T_)/¥°4

bF=

yo (m_-

_= "frw

cl_= - _,_'Fw

A

A

(3.48)

Therefore, application of Eq's. (3.45b and d), and (3.430 and d)

together with Eq's. (3.48) yields the following important

relationships:

(3.49a)

(3.49b)
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=

(3.49c)

(3.49d)

Eq's. (3.49a and b) together with the equilibrium saturated

vapor line relation for the fuel define the wet bulb

temperature of the droplet and the flame temperature.

They ar___eeidentical in form to EQ/__ (1.25a and b) and are

no___trestricted to flat plate flow. They take care of the

redundant boundary condition mentioned above and specify

conditions necessary for a steady state. These relations

occur for any flow in which heat and mass transfer are

similar (Pr = So) and will occur in any boundary layer

flow under this restriction. Eq's. (3.49c and d) are peculiar

to this problem since they rely on the integrals of T and

_ as linear functions of F'. Note then that F" (0)/F(0)

and F' are functions only of the two parameters _o_ /_ and

_ _v . In fact_ the momentum equation can be solved

by specification of these two quantities alone; they fix

the value of the blowing parameter F(0). Note that when

_ = i, separation occurs. Therefore_ the assumption

often made in the literature that the liquid temperature

is the saturated temperature for the total pressure of

the gas leads to an inconsistency in this respect. Note,

furthermore_ that a most interesting quantity is the mass

burning rate at the flame which by Eq. (3.12c) and
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tracing through all the transformations is

i

[ J#

(3.S0)

which is also specified by only the two parameters Y___ and

_o_/ _.... • Therefore, without knowing the details of
g

the complete temperature and mass fraction fields a great

deal of information may still be extracted. The pure

vaporization limit is taken as Yo_/i_ o. The Blasius

results are obtained as _FW and Y_o_o but maintaining

_o_ /i _w finite.

Desirous of obtaining solutions for many values

of the parameters and because of the need of the steady

solution for the unsteady integration, the Blasius

equation, Eq. (3.40a), subject to Eq's. (3.43a), (3.47a),

and (3.49 cand d) has been numerically integrated. For

an initial guessed F"(0) the equation is integrated

out to _ = 8.5 by a Milne variable step size technique

contained in a package subroutine available for the

IBM 7090 computing machine (27). The value of F' (_)

is compared with 1 and the initial values are assumed

linear in the final values; Newton's method is used to

guess new initial values and eventually converge.

Convergence is quite rapid for the Blasius equation since,

as is well known, this equation behaves well about _= oo

All numbers are believed accurate to at least .005%.

The results are presented in Table 2 and Figures 7 and 8.

Quantities at the boundaries have been considered more

importantthan detailed profiles. Therefore, only in
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Figure 8 are samples given of actual profiles.

There are several interesting points to note

on Figure 7. First, the mass burning rate is usually

of the order of one half of the vaporization rate, at

least for large YF and moderate _'o=_/i . Therefore,

approximately half of the vaporized mass is convected

downstream rather than burned. Secondly, as expected,

an increase in _ moves the flame position toward
I

the liquid surface and captures more of the vaporized

mass at the burning surface. Therefore, just as in

spherically symmetric theory, Yo_ has a weak effect

on the vaporization rate for fixed YF_ but here it has

an extremely strong effect on how much is locally

burned rather than convected downstream. Third, a

change in Y_ for fixed Yo_/_ has a marked effect on

F(O) but almost no effect on - especially at high YF_
mFf

This is because of the opposing effect that a high

surface rate and high YFw "blow" the flame out to a

larger _ , thereby capturing less of the vaporized

mass. Finally, note that F"(0) is a unique curve,

independent of YFw and Y%_I_ • This is obvious, since

the Blasius equation will only admit one solution for

each F(0).

Finally, in order to fix an idea concerning

correspondence of this convective theory and the old
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spherically symmetric convective theory note the definition

The last grouping is the non-dimensional mass flow of

the simpler theories. Since _ is 0[i] here, the mass

flow referenced to (@_/_I is proportional to q_ as,

of course, is known for heat transfer in laminar flow.

Comparing with the correlation, Eq. (1.27), it is seen that

here for Re -_ O there is no vaporization while

there was for spherically symmetric burning. This is a

fault of the asymptotic procedure being used since errors

are being made of O[I/q_] compared to 0[i] ; this

error becomes infinite as _/R_ O. The above comments

are not, of course, restricted to the flat plate.

F. The Stagnation Point - Steady State

At the stagnation point r : s where, at least

for a sphere, the error made is O[S_]. For _ = I the

governing equations from Eq's. (3.35) are

(3.52a)

(3.52b)

(3.52c)
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Again it will be assumed that

using the Mangler transform

s:Is = S3/S

l.i = t/.

S S

#%

Eq's. (3.52) become

9_ Is _ +t_ _ ÷ (_$)F : o

(3.52d)

First

(3.53)

(3.54a)

(3.54b)

(3.54c)

(3.54d)

Then using a modified Howarth-Moore transform

o

^ (%V= -! _-
-%

(3.55)
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%

Eq's. (3.54) become

T,

_s z

_ . _A-r_ -_-r. = _

Then introducing the boundary layer variables

A

2/=& /" x_x t-+t
Z S

and the following perturbation forms

(3.56a)

(3.56b)

(3.56c)

(3.57)

(3.58a)

(3.585)

(3.58c)

the steady state set is first obtained from Eq's. (3.56).

F" + -_FF"+--%(T F"}" "-0
(3.59a)

'_"## _ .':1,._ _ i = O
(3.59b)

_'1_ If + _ _' _'W = 0 (3.59c)

Noting that, miraculously, a set of ordinary differential

equations is obtained for the perturbation set, there
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results

tit II H H#
P _ _ I=P g F'Pf+ _ PF 't g L_ pc= y_NF3 q

{ P%:' r, M?j' (3.60c)

The last term in brackets in Eq. (3.60a) is the

perturbation in (_l_) and is readily obtained from

Eq's. (3.34) and(3.31) since Fs = - _$,

Again tracing through the transformations_

Eq's. (3.57)_ (3.55), and (3.53)_ the surface boundary

conditions in the steady state are obtained from Eq's.

(3.16a).

F r(o)--0
(3.61a)

(3.61b)
T(O) = _"

h"l= (o) = h'F_

T'(o) = -_ Fco)/B,,o
In this problem numerical factors somewhat cloud the

picture.

(3.61c)

(3.61d)

(3.61e)

The surface mass flow is, from the transformation
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equations

w = w--s

which is independent of x. The flame and infinity boundary

conditions are given by Eqts (3.45) and (3.47). The flame

position is given from Eq's. (3.57), (3.53), and (3.55).

(3.62)

sf o
1

which is, in general, a function of s.

The solution of the steady state set, Eq's. (3.59)

subject to Eq's. (3.61), (3.453, and (3.47), is not as

simple as fop the flat plate due to the fact that the

energy and momentum equations are coupled because of the non-

zero pressure gradient. Therefore, at least one immediate

integral is lost. The analytic information lost is that

equivalent to Eq's. (3.B9c and d) in the flat plate case.

However, once again heat and mass transfer are similar from

Eq's. (3.59b andc) , and, as previously mentioned, Eq's. (3.59

and b), still hold since T= _MYK* K where _K and _

are determined in Eq's. (3.48).

Two pieces of information have been lost since

the integral of a second order equation has been lost.

These are F"(0)

(3.63)

: _[YFw .%I'ooD/_ )F(,o)] and F_= ._ ['_'lFwl"_('o./_],

. However, it is not here. In fact, although disguised by

the many transformations all state variables and v are
functions of y alone to _[S2]. This is expected from well

known stagnation point solutions. The fact that ordinary

differential equations result for the unsteady case comes

from this property, although there is no _ priori know-

ledge that this should be so.
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They are replaced by the specification of two additional

parameters_ here taken as _ and _. However, because

of the nature of the lost information the numerical

integration becomes more difficult; an iteration must

be carried out for both F(0) and F"(0). In this problem

the mass burning rate at the flame is given by

(3.6_)

It should again be pointed out that no longer

is the solution of the momentum equation independent

of the energy equation, therefore, the presence of the

heat source alters the velocity profile. As such it is

definitely impossible to obtain the solution from previous

work on the compressible boundary layer with blowing,

Reshotko's (28) work, for example. The limit of pure

vaporization is still _o,_-_ O. But to obtain standard
l

blown incompressible boundary layer results it is now

necessary to also pass _-_ | . To obtain non-blown,

incompressible theory (Homann flow) _-90 and _F -_O

with _Fw_IYo_ finite. Once again separation occurs when

_F w = _ since an infinite evaporation rate is implied.

The numerical integration proceeds as for the

flat plate except that now a two-fold iteration takes

place, F(O) and F"(O) vs F'(_) and T(_). Again the

initial values are assumed linear in the final values for
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the iteration procedure. There is more difficulty in

convergence here, since, as is well known, this set of

equations contains one solution about infinity which blows

up powerly in _ . The initial values guessed must be

"sufficiently" close to the final values for convergence

to be obtained. If it was obtained, only a maximum of

five iterations were necessary for convergence within

.00001 of the final values.

The results are shown in Table 3 and Figures 9-11.

Figure ii is the only detailed profile calculation

presented since the primary interest is in the quantities

at the boundaries, to prevent a further iteration in the

time dependent case. This particular figure shows the

interesting phenomenon of the velocity overshoot near the

heat source due to the pressure gradient acting on a

fluid of low density (high temperature).

Fixing "_ and _, Figure 9 should be compared

with Figure 7 for the flat plate. The conclusions are

similar to those of the flat plate. The primary differences

are the fact that _ is smaller at a comparable Reynolds

number since, obviously, the boundary layer thickness

is smaller. Then note that F"(O) is no longer a unique

curve with F(O) since it now depends on the temperature

field which is influenced by _J_ and _wv " A

surprizing result is that, for fixed _'F_' F"(O) increases
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with F(O) whereas normally the higher the blowing parameter

the less the skin friction. This is due to the strong

effect that Yo_7_ has on increasing I"_ and

decreasing _ so that the velocity overshoot is greater

and moved closer to the body thereby increasing the

velocity gradient. Extremely strange behavior is exhibited

at sufficiently low _gw where for fixed _o_]_ , F"(O)

vs F(O) undergoes a maximum (see Table 3). Finally

note, with the use of Eq. (3.64), that approximately

one-half of the vaporized mass is again convected downstream

rather than burned. However, more is captured for a

comparable case than for the flat plate. Figure i0

shows the effect of the two additional parameters, _and "_.

The results are somewhat obvious on physical grounds

except that the dependences are quite weak. The

exception is F"(O) vs "_ ,the strong dependence of

which occurs through the viscosity law, _= i.

G. Summary

A formulation of the droplet burning problem

in a high Reynolds number flow has been given. Treat-

ment of the Prandtl boundary layer results as a

natural consequence of an appropriate asymptotic expansion

of the full Navier-Stokes equation. Difficulties in
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obtaining a solution over the entire droplet have been

indicated; the decision to treat two typical boundary

layer eases was made. An investigation of the collapsed

flame zone assumption in a high Reynolds number flow

has been made; the results show that the existence of

such a flame is marginal for normal pressures. The

formulation for the perturbation problem for the stagnation

point and flat plate has been presented. Finally, the

steady state solution to these two problems has been

obtained. Some of the results of the simpler theories

of burning have been shown to carry over into the

convective case. However, one of the most important

results has been shown to be the fact that much of the

vaporized mass is convected into the wake rather than

burned in a diffusion flame surrounding the droplet.
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CHAPTER IV

PERIODIC SOLUTIONS TO THE CONVECTIVE DROPLET BURNING PROBLEM"

A. The Boundary Conditions

Immediately upon moving to the solution of

Eq's. (3.42) and (3.60) an important subtlety should be

noted. From Eq's. (3.38) and (3.36a) note that the

boundary layer variable _ is a time dependent variable

with a steady state component and a perturbed component,

This occurs since 9 contains such components. Therefore,

F(_ ), Y(_ ), and _k(_) are not truly steady state

unless 7 = _ . Something has been left out in the

construction of Eq's. (3.40), (3._2), (3.59), and (3.60),

the perturbation in _ . This distinction was omitted

in Illingworth's work (23) but made no consequence

in the results. It will be important here because of the

existence of a boundary condition in the interior of

the boundary layer (the flame). To take care of this

difficulty two approaches can be taken. The first would

be to actually consider perturbations in the independent

variable, and the steady state equations, Eq's. (3.40) and

(3.59), would be correct for F(_), T(_), _k(_ ).

However the perturbation equations, Eq's. (3.42), are

then incorrect since no terms appear to account for
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. The second procedure, and the one that will be

adopted is to analytically continue any quantity _(7)

into the complex V-plane as _(_) = y(_ ) + E _ _'(_ ).

Then the total quantity of interest is

As long as the continuation is valid the solution of

-I
Eq's (3.40) and (3.59) will yield _(_) and _(9 ).

In this case the perturbation equations, Eq's. (3.42) and

(3.60) are correct. The two procedures must be equivalent

to first order in E •

Then consider the evaluation of any quantity

at the flame. At a fixed x position

Therefore, define

and

(4.1)

+ o
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is the true perturbation in the flame position in

- space, accounting for movement of the upper limit

of integration and the changing integrand in Eq. (3.36a)

Then _evaluated at the flame consists of a steady state

part plus a perturbation quantity _ plus a continued part

of the steady state term, but here continued to the

true flame position. Normally, for any other position

within the layer the term involving _ would not appear

in Eq. (3.51). Now the flame boundary conditions,

Eq's. (3.17) 3 may be cast in perturbation form

or

(4.2a)

(4.2b)

(4.2d)

Eq's.(3.42a) and (3.60a)
continuous across the flame

(4.2e)

where use has been made of the steady state boundary

conditions, Eq's. (3.45). Condition(4.2e) requires also
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that P_ and P_f are continuous across the flame

which would follow from a higher order investigation of

Eq's. (3.12d and f).

The surface conditions, Eq's. (3.16), become

for the flat plate.

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

For the stagnation point Eq's. (3.53d

(4.3f)

and e) are replaced by the following:

"_'Co): _ (,-_F,.,)[¥_MFCo)+P(o)]-%3 _,(,,_F(o)(4.3g)

In Eq's. (_.3d and g) the first term is due to the

perturbation in the _ product. It therefore accounts

in part for compression and heating of the boundary layer.

The conditions at infinity become from Eq's.

(3.22), (3.28), and (3.11f) for both the stagnation

point and flat plate
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(4.4a)

(4.4b)

(4.4c)

B. The Flat Plate - Low Frequency

Lam and Rott ( 24 ) have shown that for the

incompressible problem an expansion of the solution in

powers of (2_) is a convergent one although, of course,

not practically useful for high frequency. Convergence

has not been investigated nor will be claimed here.

However, such an expansion will be attempted and will

at least provide asymptotic information for low

frequency.

p-

Therefore, assume

_%.-(}

,_. (2_')"-'--,s-_') (4.5)
-"O

Substituting Eq's.(4.5) into Eq's. (3.42) and collecting

like powers of frequency

o[@f) °]

x, [4L°'.l-- _.",Y,' + __MYj

(4.6a)

(4.6b)

(4.6c)
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o[(2r)']

+ F ,- 3F (') -2 - -(I +4"N )T

+ 1co,I '_c°/+ _[F -F"_ (°' .]

d, [J,"'j= aF'I c'_÷t,+_MlJt{')+ _M(;_-,)T

_c_,"'+F _("' 't ' ' _(_' ". ""}'

(4.7a)

(4.7b)

(4.7c)

"1"_1_ It =', _(1_-.,| I ?(.h-.,) I='# 3 (4.8a)

_K,[_<"] -2. _'J,("}= (I, ;-F')J. L"'''- (2..,)_._T'
-.._ _(.n--ilT, (4.8b)

_,__F')J._ "-')- (2. _,)_ (48c)

The boundary conditions, Eq's. (4.2)-(4.4), can be

similarly expanded. At first, a troublesome point looks

evident, that is, the arbitmaPiness of _ . Both the

sign and magnitude depend upon the particular problem

of interest. This term appears due to the travelling

nature of the wave and therefore through the pPessuPe, pressure

gradient, and associated state variables under oscillation.

Since these ter_s would not appear fop an incompressible

fluid, M _ 0, %hey will be called terms due to a "pressure



-97-

effect". The remaining terms would still appear for an

incompressible fluid and will be called terms due to a

"velocity effect". 1 It is possible, since these terms

only appear in the inhomogeneous parts of Eq's. (3.56)-

(3.58) and, what is equivalent, in the boundary conditions,

to separate the two effects by assuming

- (o) (t)

(4.9)

The problem may then be solved for arbitrary _M.

Consider the problems one at a time.

differential equations for the £0_ problem are

_, EA _°' - T'

Coj i

with the boundary conditions from Eq's. (4.3)

I

(.o) (o) = otol

(o_ (as : O

F (.o; Fv.I (o)

-_1 c., I(01 (') /

The

_o,(o)co,,,' co,Fco) ÷ (I- Yvw)_ ,_"'w _,,Co) = k_w co_

. The naming of these effects also stems from their properties

explained at the bottom of p. 138.
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From Eq's. (4.4)

%co, (._) :1
.._ Co)

(o) (oo) = 0

,_ c°'(ooJ : 0
o LoJ

and conditions at the flame stand as in Eq's. (4.2) if

quantities are replaced by the quantities. This is

nothing but the quasi-steady velocity problem for which

the following solution is easily constructed:

_(o) F + _ I='l
(%) : 2-

._ (o) : 0,_. 1=____.'1
Co; Z

(o) -- C_

(4.10)

The a's and c's are defined in Eq's (3.48). This

solution satisfies the condition _=(o) = (9 • This
r_ (o)

solution is clear since all that is being perturbed is

the free stream velocity in the Reynolds number. Since

the steady state mass flow is proportional to

co, (o) = F(o)/ Z
a perturbation should yield _"(o)

which it does. Nothing else is disturbed in the field,

the boundary layer thickness just oscillates.

However, the quasi-steady pressure effect is

more difficult since compression of the layer is occuring

and complex boundary conditions occur.

(4 g), (4 6), (4 3),and (4 4) the (oj
.... (t)

specified by

_ (o) /st /1+ II
Ca) I- F c_ t'°) (o)O.c,i F _" c,) = _CF'I

Using Eq's.

problem is

(4.11a)
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gl [ "_ (o) - (0) If III

under the boundary conditions
%_ol

c_)/('°J" " =0

(4.11b)

(4.11c)

(4.12a)

./ll (o) (o) = 0
O) (4.12b)

(6) (0) = _" (o)'/g F (,) Fw (_

(o,/

8_

I (Ol. .
kw trF(:o)ll_yF.)_,, ÷(I-YFJ

(4.12c)

(4.12d)

(4.12e)

(4.12f)

._ (o} (,_) = I--_'
(4.12g)

,/_8 (°I (4.12h)

and Eq's. (4.2) written for the (o|
(I) components. Because

of the surface mass transfer no simple solution can be

constructed from the steady state solution as was the case

for the quasi-steady velocity effect. A machine integration is

required. Here a three-fold iteration is required for the

(ol @(o) H
quantities _FW (1) _ l(i) (o) ) and _ (o] (o)

as functions of Eq's. (4.12g and h). The same type of
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iteration technique was used as for the steady state; it

was also used in allcalculations to follow. 1 The

integration procedure has switched, however, to a P unge-Kutta

technique using the same package routine (27) as before.

This switch was made for all time-dependent calculations

to save computing time during the initial iteration

steps partly due to the fact that all time-dependent

momentum equations have one unstable solution about _=_

The interval size used was 0.01 and now the error is more

or less on an absolute basis rather than percentage-wise.

This error is estimated from the difference in the steady

state quantities based on the previous procedure, since

they were also integrated along with the unsteady quantities

to avoid reading in a table of values. All time dependent

quantities are believed accurate to .0001.

The additional parameters which must be

specified for the problem are _, _, and _, since integral

information is not available. Note that __ is the

3
actual variable of interest and that _ does not have

to be independently specified. This can be seen from

Eq's. (4.11c), (4.12h), (3.48), and (4,2a and b). A quantity

of extreme interest is the perturbation in mass burning

rate at the flame. Expanding as in Eq. (4.5) and

evaluating the perturbation from of Eq. (3.15h) at the flame,

i.

•

i |, .......

This iteration is, however, exact since due to the linearity

of the equations the final values are linear in the initial
value s.

All quantities of this kind are perturbation quantities

divided by _ and, hence, finite•
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The

(nJ

has a similar expansion and is evaluated from Eq. (4.2a).

dependence is extracted by dividing by the steady

mass burning rate in Eq. (8.50). Such normalized quantities have

much more physical meaning than the absolute number, anyway.

Note from Eq. (4.13) the three components making up this

perturbation. One is due to the perturbed mass fraction gradient,

one is due to the flame movement "sweeping out" the steady state

field, and the third is due to compression and heating of the

boundary layer changing the "steady state" gradients and trans-

port properties. The results for the quasi-steady pressure

effect are shown in Figures 12-14. In viewing these figures

the following points should be borne in mind:

_(oi
i. Except for _(,j , a negative quantity means

1
an increase in Phase with a pressure increase.

2. _(o_ >0 signifies a vaporization rate

increase in phase with a pressure increase. 2

Figure 12 shows the dependence on the parameters of interest in

the steady state, _Fw and Yo,/ _ • The following conclusions

can be drawn:

i.

lo

2.

As expected, when the vaporization rate increases,

the shear stress decreases.

2. In analoqy to the plane case of Chapter 2

for higher steady state mass flows only in

This is a result of the form of Eq's. (3.28) and (3.83).

This is a consequence of Eq. (3.36e).

increase
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I.
the curve vs ]_w

CD)

3. The small values of _F_(1) again insure

that (_ (0)_ 0 is a reasonable assumption.

_Q| /_ is a decreasing function4.

with increasing steady state vaporization and

burning rates.

5. The trends of _(o;(i;primarily determine the

to!(,)/_ showing the extremetrends of M R

importance of flame movement.

6. The quasi-steady vaporization and burning rate

perturbations are much higher than for the

plane model due to interaction with the convective

field. In fact, they are 0 [ i] rather than

0 [_ -i] , in general.

7. All quantities except the shear stress increase

in phase with the pressure.

The primary conclusion to be drawn from Figures 13

and 14 is that dependences on the additional parameters

and _ are weak especially for usual values of these parameters

( _ > _ j _ < O._ ). The dependence on _ is strong,

however, as will be shown later through high frequency analyses

and for the stagnation point.

1 The normalized function _t_ _°_

shown but can be readily calculated from Table 2.

is not
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Once again, for clarity, the analogous functions

for the quasi-steady velocity effect may be computed from

Eq's. (4.10) and are presented here

(o)
(.o,(o) = F(o) / z

M (°)/ = ilz

_(ol II _ll(
(=; (0) = _ O)

(=,) = - /_

£'0) = 0Fw £0)
(4.14)

All are effects in phase with the velocity.

The problem for first order in 2q is now

attacked. However, only the (i} problem will be solved -
(o)

that for the velocity effect. The reason is that the

primary interest is in the maEnitudes in phase with

the pressure. Because the expansion parameter is _K

any quantity of first order concerning the pressure effect

must necessarily be g0 ° out of phase with the pressure.

For a travelling wave this is also true with the velocity

effect, but recall that a standing wave can'be constructed

from two of the travelling waves being considered. Since

a standing wave is characterized by a g0 ° phase shift

between the velocity and pressure, any quantity which is

g0 ° out of phase with the velocity is of interest. This

result which can be directly seen from the expansion
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procedure is true for all boundary layer work along

this line: Unsteady pressure effects in phase with the

pressure do not become important until 0[_2].

{,!
The (o) problem is specified by Eq's. (4.7),

(_.9), (4.3),and (4.4) to be

(,|///+ tt_ _(,)r

(4.15a)

(4.15b)

under the boundary conditions

(,)/

(4.15c)

O)
.._ 6o) = 0

('_ "0) :=
(oj

._¢') /(o) = --.3 (t)

(d s
Ft=) (o) = - _. ¢'J FO_) .W3(!--XewJ- O)_"toj(o,,#1"wl, oj

('1/- -

A (''1_-)=o

k c''_)=o
0 (o;

(4.16)
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and the flame conditions, Eq's. (4.2). Again, and it is

true for all orders of the velocity expansion, an integral

of Eq. (4.15a) is
(,)

U ('_

and _Fw,0?O__is implied. Therefore, the numerical integration

of this problem merely requires an iteration for the

t/
two quantities @g')

@_0) (O) and __(')(o) (O) . The

previously outlined numerical techniques were used and

the results are presented in Fizuresl5 and 16.

Recall that, of necessity from the expansion

procedure, any quantity is 90 ° out of phase with the

i
velocity. It is perhaps best to construct a standing

wave at this point and consider components in phase with

the pressure. If in Eq. (3.22) _=-i and another

perturb_ion with _= ; is subtracted there results a

standing wave of the form

and

Therefore for the _') problem if a quantity is positive
' (o)

it is in phase with the pressure on the left hand side of

the pressure node and vice versa. Speaking, then, of the

left side of the pressure node the following observations

may be drawn for the fundamental standing mode from

me This is true for the fundamental frequency only,

not for the higher harmonics.
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Figure iS:

or possibly for sufficiently low

The observations relevant to Figure 16 are

i.

I. The perturbation in the burning rate

is generally in phase with the pressure

and higher for higher steady state rates.

At sufficiently low _o_l_ , however, the

function becomes negative - out of phase

with the pressure.

2• Once again the burning rate perturbation

closely follows the flame movement,

8. Again, as the vaporization rate increases

the shear stress decreases.

4• The vaporization rate perturbation takes

both positive and negative values, being

in phase with the pressure for high _o_

•

1

Quantities are linear in _ and _ , a

result which apparantly can be deduced

from the differential equation and boundary

conditions•

Weakly dependent upon _ _4_ {'j /_ is
' _oj

in phase with the pressure for sufficiently

high _ and again follows the trend of _ (01 .

The vaporization rate perturbation is in

phase with the pressure for sufficiently

high _ and _ .
U
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4. The shear stress shows the opposite

trends as the vaporization rate.

Now effects in phase with the pressure are known

to 0 [ 2q] or first order in frequency. The integration

of the low frequency series will not be carried any

further. It remains to investigate the asymptotic behavior

of high frequency. It is hoped that this informetion to-

gether with information over the full frequency range for

the stagnation point will aid in giving full frequency

information for the flat plate.

C. The Flat Plate - High Frequency

It was pointed out in ChapterII that when the

frequency becomes sufficiently high a phenomenon known

as the high frequency boundary layer, a region of rapid

transition just as the regular steady state boundary

layer, com_s into play. For note from Eq's. (3.42), when

_--_ cO the dominant terms of the differential

equation do not contain the highest derivatives and a

formal series development in powers of I/2_ could not

satisfy all boundary conditions. The physics of what

is happening has been explained on p. 38. In order to

recover the highest derivative it should be clear from

Eq's. (3.42) that differentiation by _ twice must raise

the order of a quantity by 2 _ . Therefore, the scale in

which the rapid transitions must take place in the
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vicinity of boundaries is I/_-_, just as with the plane and

spherically symmetric models. The high frequency limit is

taken under the constraint that wave propagation normal to the
i

boundary layer is not important. This is an effect of O__

which is the ratio of a normal wave propagation time to a cycle

time. This effect is not included as a result of the expansion

procedure used in Eq's. (3.14) with the result of Eq. (3.15d).

Therefore, define the high frequency variables to be

(X = 9"'11 _ = _ (4.17a)

Eq's. (4.17a) are the outer variables holding for the majority

of the field in which diffusion is not sufficiently fast to keep

up with time rates of storage of mass, momentum, and energy.

Eq's. (4.17b) are the inner variables holding near the surface

and flame boundaries where rapid transitions in a distance of

0 [_] must take place. In these two sets of variables Eq's.

(3.42) become

(%.18a)

(|+ ,_MF'}0"= -"MPT'- ,I'M(I'-iJT I"_'[_e*F0_

+PT'- r6Mr u'+ -_ -T _] (4.18b)

,:._IL ¢ i (4.18c)
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(4.19a)

- --_IFF'(_ T '
(4.19b)

(4.19e)

where Eq's. (4.19) are valid for #:_, or #@:#a"

On each side of the flame the existence of a

(4.20)

is assumed. The solutions with _I ' are valid near the
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the surface, those with _Lnear the flame and those with

do not exist on the oxidizer side of the

flame.

If Eq's. (4.19 _ are to be important only near

the flame and surface, that is within a distance of order

= 1 of these boundaries, P(_) = F(___) should

possess an expansion

n=O
(4.21)

near the wall and

F

near the flame. The first terms in

(_..22)

of these expansions

are F(O) and Ff , respectively; these are known numbers.

Therefore, viewing the homogeneous parts of Eq's.(4.19) it

should be clear that solutio_ can be picked which have

exponential decay from the boundaries in the variable_.

They can therefore match no power of _ of another

solution which is 0[_ |] away from the boundary of

interest. Therefore, with these inner solutions, what

happens at the flame can have influence on that at the

wall for no power of _ . This greatly simplifies the

boundary conditions. A further expansion which is assumed

is
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_-o_ _ (V_ = . v,_"'('Z)

R = ._ ,w,"r_"'(f)

L./.- _" _4" ,.,c,.,)(_)

-- _ ("I_- _4"w,, (_)
YI=O

Then from Eq's. (4.3), (4.20), and (4.22) the boundary

conditionsat the wall become

No Slip
I

(o)

,__>o
!

,, (.pl . _a,,I.g_. (oj + _ r_ +'1(o; =0

Temperature

Mass Fraction

n__o

W (-;. (",)

Wall Heat Transfer

(t) (o)
2..,,=(o) + r-_. (o):o

&

(o; # .......

U,.FCIo),I/Z - Z ,_ M ('J rF+(') "1= [_,F(oi+ (o,j

(4.22)

(4.23a)

(4.23b)

(4.23c)
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Wall Mass Transfer

Co) / ( ¢e !wF. (o;_ : (,-xF.la_;m[A '_(oi + %,: (o) ]

(=)t (,)1 ,r (o)
vF _oj _-_rE w_c co)= _'JM(I-_.) -_O)LV_Co )

_F( o .. (6)

• 2SM[I__o,,,-_.(o,]

(_.23e)
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Expanding in the same way at the flame Eq's. (_.2)

become

Mass Fraction

Iv; ÷w% ], *_o, ]=o (_.24a)

Temperature

_o_ Fo = WF o (4.2_b)

Continuity

Co) tl. u

i.
I1 io

f.F.(e') .= r. ('),o{

n_>o
(.j _. (n) _(") t-)

_. + f,,, =_o" +.r,L"

(_.2_e)



- 114 -

At infinity Eq's. (4.4) become !

o (,_) = I n_)l A o
\

(4.25a)

(4.25b)

Vo{")C_ ) = o

where the errors made are 0[_ "I/W 3 in all

(4.25c)

the boundary

conditions if, indeed, the inner solutions demonstrate

exponential decay to all orders in o4. .

Eq's. (4.18), (4.19), and (4.22) become

(l÷;m)J_(';'- _MF'_, c')=' (l.l-4;r,,l)T
(4.26a)

(I f4M}-_ ('')#- _MFI#-_I(')= 0 (4.26b)

I! (e) ll!

(,÷2_._-,L _. F'a(-,: _ C_(--"%F_.(.-.,_F'u.c.--,]

4(___ 2_ _1_1-.1 IF I F I1_1(.-l_) ] (4.26d)

(,_+ SI'1_ -_ (0) ,_ 4m A(°)TI - 4:¢"_(,Y-,) T (4.27a)

(|i.&M) 4 ('; - {MA(IiT '

,_ (.- _,[F %("'"- T'/(""]

(4.27b)

(4.27c)

(4.27d)

(,÷.(.)v,.('_.;N_4("yd (4.28a)
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(,+_M)v'"_-_MI("y,
(4.28b)

(4.28c)

•(_)[_"vr"-F'_'"-"]
(4.28d)

(4.29a)

(4.29b)

(4.29c)

(4.30a)

(4.30b)

_/S ["W_:' ) ] =(:} (4.30c)

Cel ] = O (4.31a)

(4.31b)

W=-['o_"'] =o (4.31c)

In Eq's. (4.29)-(4.31) only the leading order differential
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equations in o( , where n is the order of the first

non-zero solution, have been given. The higher orders will

only add inhomogeneous parts. In addition to the

nomenclature list it will be pointed out here that the

first subscript refers to which side of the flame is

under consideration and the second subscript refers to either

the wall ( i ) or flame ( o ) or the flame ( i ) on the

oxidizer side• The method of separation of terms in

Eq's. (4.26)-(4.31) has been possible due to the

linearity of the problem; quantities due to time rates

of storage have been incorporated into the _ , S , and V_

equations• This system under the boundary conditions, Eq's.

(4.23)-(4.25), can now be easily recursively solved.

The procedure is as follows:

i.

2 •

Eq's. (4.26) may all be solved by one

integration yielding one constant of

integration each time A" ("| ; which

can, however, undergo a lump across the flame .

Eq's. (4.27) and (4.28) directly determine

(,_ (ml in terms of A t,)

_0 and V_O _O "

Eq's. (4.29)-(4.31) can all be solved, each

equation yielding two contants of integration.

One constant is taken as zero to provide

exponential decay into the region of interest.
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o

•_.15 ?F' ot,Z
_4c';= A_,, _ ,+;.F'

Ctc::.

Therefore _ C 0 _ l _ _' )

Consider Eq's. (4.29)

I"F"°)"-- A e (°)
c" v'(

(J_ (e)
V V

J / /

(4.32)

etc. are determined.

LL (o; --8;
#4 = A¢, c-I#4 e

W (') -_'
p_ " Av coje

F t"

Now consider the wall problem.

Therefore, Eq's. (4.23d) say

the same differential equation in Eq's. (4.29) must hold

_')
for ,g. . This will always happen if the leading

L

order solution is zero. Applying Eq. (4.23b) to Eq's.

Eq's. (4.23a) say

A_co).F == 0 . Since

(4.29b) and (4.27a)

A_o, = _(_-J)
Now apply the no slip condition, Eq's. (4.23a). Since

Arc'; = _(I,4m)

(4.33)

_,',_) = O.
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Then apply the heat transfer condition, Eq. (4.23d), in

which the only unknown is A4_(,; , and

I='

Then from Eq. (4.33) apply the mass transfer condition,

Eq's. (4.23c), to obtain

Aw(°' = -4MCI-YF.)S. Lr-,)?
F(

Then from Eq's. (4.23c) and (4.28a)

determined as

= Aw,J')

The recursive procedure is then as follows:

I

I. Eq's. (4.23a) determine _r_-*l).

2. Eq's. (4.23b) determine _j,e,;.

3. Eq's. (4.23d) determine A_.L,,I).
-(

4. Eq's. (4.23e) determine --.AWF(R) "

5. Eq's. (4.23c) determine %&_)_.
Ogw

The wall problem is therefore completely solved without

reference to the flame and all A_") are determined.

From Eq. (4.3d) the wall mass vaporization rate perturbation

has the expansion

-!
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and

_ o,  r. cojj= _ ,.
C4.34)

a result which should obviously be compared with Eq's. (2.7)

and ( 2•8 ) for the plane and spherically symmetric models.

The vaporization rate goes to infinity as _ with

a component in phase with the pressure and is purely a

pressure effect•

Now consider the problem at infinity. Eq's.

(4.26)-(4.28) automatically satisfy Eq's. (4.25). In

fact that is what partly dictated the form of the

separation of the differential equations• Then only the

The procedure for solution is asflame problem remains.

fo]_ws:

i.

•

All - O are known but the constants of

integration on the oxidizer side, A_@ (ml,

are unknown.

_) and VoLta) are known in terms of_o

3. Eq's. (4.30) and (4.31) can all be solved,
/

always picking the solution with exponential

decay into the region of interest.

Then Eq's. (4.2qe) say that

r':. co) I" (.i) _ (o,_ _ (_,)=
;=o = _'o = o,: = o,:
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and that _(o; and _b; are continous across the

flame. Then Eq's. (4.27a and b), (4.28a and b) under

Eq's. (4.24a-d) say that

= = (o; . el} _L {_ (,_=_"-w ,Ij w._" Wo!" _o_= -_ o

This is already striking and is analogous to a result

obtained in Appendix C for the spherical model. The

field under high frequencies of oscillation responds

naturally to this oscillation at the flame. Boundary

conditions are natural to this oscillation so that

strong gradients do not appear at the flame. Therefore,

it will be expected that the mass burning rate perturbation

will remain bounded in the limit of infinite frequencY.

Continuing, from Eq's. (4.30a) and (4.31a)

C (*' A r '*_ e _" _*&MF_
=

with analogous solutions to the remaining equations in

Eq's. (4.30) and _.31). Since from Eq's. (4.26b) _(')

is continous, Eq's. (4.24e) say

: -A,-o?'
Then again Eq's. (4.24e) say

._ (o# I{ (el II

Eq. (4.26a) then yields

%1 ",_
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Then the fourth of Eq's. (4.24e) gives a jump condition

on A_ ca) . This exact procedure is then repeated

starting with rp: 2) and _o_(_; and the entire solution

to the stream function is generated. The constants

of integmation in Eq's. (4.30b and c) and (4.31b and c)

are obtained in the following manner from Eq's. (4.27),

(4.28), and (q.24):

i. Eq's. (4.24a and o) are two equations in

the two unknowns Aw_ o_"' and AWo{")..

2. Eq's. (q.24b and d) are the two equations

for A_I and A_I .

Carrying this out part way

Wo_;

from which the burning rate at the flame can be carried

out to 0 E_(] . Expanding Eq. (4.13) in the present

variables,

(.n)

The outlined procedure yields

,,,% %

AS _0

traced through the equations. The _ factor comes from

a compression of the boundary layer increasing gradients

and transport properties. -_ comes from a convective

"sweeping" term carrying the steady state fuel flow into

(4.35)

the physical origin of the terms can be
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the flame and by moving the flame position.

appears because the convective sweeping is increased

when the pressure gradient acts on a fluid of lower

density at the flame. 1 Note that Eq. (4.35) is finite

as _-_o and is purely a pressure effect to 0_]o

I__tapproaches the infinite frequency limit from a side

which has a component i__nnphase with the pressure, although

at o_ :O since _>_ usually, it is generally 180 °

out of phase with the pressure.

Because of the algebraic complexity of the high

frequency expansion, it has not been carried further.

It will be returned to, however, after completion of the

stagnation point analysis. Many of the results are similar.

D. The Stagnation Point

Eq's. (3.60) are to be solved under the wall

boundary conditions, obtained from Eq's. (3.16),

P/(o) = 0

0" (o) "= 0

_F (°) = _f't_

_"'6o) = _ P Coj
3B._ I-P(°) -_m ]

This is a consequence of Eq's.

(4.36)

I. (4.26a) and (4.28a).
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the flame conditions, Eq's. (4.2), with Eq. (4.2e) replaced

by the statement

I pII
P; P) continuous

and the conditions at infinity, Eq's. (,._). Once aEain

it is desirable to split the problem into a ve!ocity effect

and a pressure effect by assuminE

o'- = oT., + ._m_,_ (..37)

Using Eq's.

separated.

(,.37) in Eq's. (3.60) the problems are

Using the linear operators

the equations become

d, EP,.,]= -

c_/_[0-,,,,] =- _ P(o, T'

(4.38)

(_.39)
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Eq's. (_.36) become

I

O7.I(o)= o

(o) )

_o,C.,= i c,-.,,,.,.)_,,,Lo_-1 _.,,,,o_c:o)

%;co,= -_ %,co
(4.40)

(_(u (o) =" 0

3 s. _,,_o)] "

The flame conditions remain unchanged in form and Eq's.

(4._) become

R'_o,(_)= I

O_co,C_J--°

(4.42)
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!

=, I-"

Eq's. (4.38)_ (4._0), and (4.46) comprise the velocity

problem which has the integral

specifying _F,c.=. O • Once again --_°/_ is the

actual vaPiable of intePest and _ does not have to

be independently specified.

PPeviously mentioned numerical inteEration

techniques have been applied to these two problems. The

pPessuPe pPoblem PequiPes a s±xfold iteration in the real

and imaEinaPy parts of F_oJ , P/_o). and 4_FW.

Only a fouP-fold iteration is PequiPed fop the velocity

pPoblem because of the mass fraction inteEPal. To check

the numePical pPoceduPe_ howevePj a hiEh frequency analysis

has also been pePfor_ned fop the staEnation point. Here the

appPopPiate hiEh fPequency vaPiables ape

!

C4.44)

HePe _ c_(_ , howeveP. The same expansion techniques

as in Eq's. (4.20)-(4.22) ape used. The methodology

follows much the same pattePn as fop the flat plate; some

diffePences must_ howeveP_ appeaP because the stagnation

point feels diffePent fPee stPeam £Padients than the flat

plate.
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Since the procedures are so similar only the primary

results will be presented here. The analysis is located

in Appendix E. Note that the high frequency analysis is

carried out without making the formal split into a

pressure and velocity problem.

The perturbation in surface mass fraction

becomes

(4.45)

which is finite and should be compared to the result

on p. 118 for the flat plate. Analogous to Eq. (4.34)

there is obtained

"_w 2 F(o)

(4.46)

which is identical in form with Eq. (4.35). Except for

numerical factors the behavior of the flat plate and the

stagnation point is the same at high frequency. This is

because the wave scattering produces a travelling wave

in the same direction as the free stream travelling wave

for the flat plate. 0nly the numerical effect is changed.

and the same conclusions are drawn as were for the flat

plate. The burning rate perturbation becomes
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It is therefore suspected that a knowledge of the

stagnation point behavior over the full frequency

range will give good qualitative information for

the flat plate over the full frequency range• Indeed,

it may even be true over the entire leading edge of

the body.

Figures 17-22 contain the results for the

pressure effect over a wide frequency range. Consider

first Figures 17a and b as representative of typical

curves. The following observations are apparent:

I.

•

The quasi-steady response (_=0) for

mr(0) and MFf/mFf is generally substantially

lower than for the flat pla_e, c.f. Figure

12.1 However, due to interaction with the

convective field this response is greater

than for the plane model, c.f. Figure 2.

The real part of the mass burning rate

perturbation is a monotonically increasing

function of frequency. For 20 Tf >

the curve will always cross the zero line

and move out of phase with the pressure

in the mid-frequency range, remaining

so far any further frequency increase.

As with the flat plate, the low frequency

limit has the burning rate in phase with

the pressure.

i • Again, note the significance of P from Eq. (3.55).
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3. The shape of the Pr(0) curve is quite

different from that of the plane model,

c.f. Figure 2. It is therefore clear

that the inclusion of convection and

flame movement radically changes the

unsteady behavior over the simplified

plane model in the mid-frequency range.

However, the high frequency limits

must be qualitatively the same since the

physics are the same. The flame cannot

influence the wall and a compression

process is controlling, not convection.

4. The skin friction components (PJI(o) and

_. If(o) in the figures) are monotonic

functions of frequency with extremely strong

response in the high frequency range. This

is, of course, due to a second derivative

being taken across the high frequency

boundary layer. It should be noted that

the skin friction is essentially imaginary,

out of phase with the pressure, during a

large portion of the frequency range.

5. The surface mass fraction perturbations

are extremely low once again justifying

the neglect of surface temperature

perturbations. From now on this will be

considered an uninteresting quantity
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and it will not be plotted.

6. As noted before, the flame movement

strongly influences the burning rate

perturbation as is evidenced by similar

1
shapes of the curves.

7. Since the shear stress and vaporization

rate curves are not similar in shape it

is clear that the unsteady state modifies

previous conceptions concerning the effect

of blowing on the shear stress.

A further observation which deserves special

mention is that real quantities behave quasi-steadily

far out in frequency. Imaginary quantities are nearly

linear in frequency all the way out to _i. Such

behavior is generally not to be expected since as

soon as _2 is not negligible compared to | , curvature

effects are to be expected. For the plane model unsteady

effects become prominent very low in frequency. This

strange behavior for the boundary layer has strong implications

concerning the practical application of the theory. Recall

that on p. ?I it was shown that _J was essentially the

ratio of a diffusion time to a cycle time. More precisely,

the actual nominal boundary layer thickness_ while

0E ,is

Zm NoZe that "flame movement" must also be interpreted

as containing a compression component. See Eq. (_.i).
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such that

_ td_ 4

-2S

Thepefore, fop &_' _t,f 0 [13t W -_ I/i0. z4;a _#,_._was

the frequency considered in the plane model• It is

clear that because of the mathematics of the convective

layer the frequency naturally under consideration is

less than the previous intuitive interpretation.

Moreover, since significant response does not occur

until _n. i, it is clear that quite short cycle times

compared to diffusion times are implied fop significant

unsteady response.

Figures 18-22 show the effect of parameter

changes fop magnitudes of changes which ape practically

possible in usual systems• If the change produced

negligible shift of the curves from the base curve

of Figure 17 it was omitted. The following conclusions

can be drawn

I.

•

The effect of YF is as it was fop the
w

flat plate• Strong effects take place

at the surface, but only mild effects

at the flame. The directions of changes

in the quasi-steady limit ape the same

for both cases.

_'o_ _ produces the strongest effect of

any parameter change. This may have been
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•

•

guessed because of the influence it has

on Tf which strongly influences the high

frequency limit• The most important effects

appear to be the shifting of the zero point

of Pr(O) and MFf/mFf to a higher frequency

and the production of a minimum point in

the burning rate for sufficiently high Yon /J"

The quasi-steady limits show different

behavior between the stagnation point and

flat plate. The burning rate responds similarly

for changes in Yo_ /j but the shear stress

and vaporization rate behave differently

in the two cases.

The effects of _ are only felt for the

vaporization rate and shear stress for

sufficiently high frequency. This is

expected since it strongly affects the wall

behavior in the high frequency limit• Also,

as expected, _ has little effect at the

flame and in the quasi-steady limit•

has the same type of effect as YO_ /]

since it roughly affects the same thing,

the flame temperature. However, in the

quasi-steady limit the behavior with this

parameter is the same as for the flat plate.

changes make reasonably strong changes
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in the vaporization rate behavior as is

expected from the high frequency behavior _

The burning rate is not significantly

affected for the parameters chosen here;

however, for sufficiently low Tf it must

affect the high frequency behavior in a

strong manner. In this respect the flat

plate will be more strongly influenced

than the stagnation point.

Now turn to the velocity effect. The numerical

results are presented in Figures 23-29. Considering

Figures 23a and b as representative the following observations

are apparent:

i.

•

g

Again, as with the pressure effect, the real

parts of all quantities (parts in phase with

the velocity) remain at essentially the

quasi-steady values all the way to _ of 0 [_

The high frequency behavior has essentially

been reached when c_ 20. The imaginary

/

parts are nearly linear in C_ out --a_far

as uu _%s I.

The quasi-steady perturbations are merely

due to a perturbation in the Reynolds number

through the free stream velocity perturbation.

Thus MF_co ,/ _ --_ |/g , etc. (See Eq's.

(_.14) for the flat plate)•

Changes in the shear stress are extremely

small until the high frequency effects set
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in,

4. Again notice the strong influence of _ on

5. The imaginary part of the burning rate pertur-

bation is negative for this case over the

full frequency range. Therefore, for a

standing wave in the sense discussed on p. 105

for the flat plate it is out of phase with

the pressure by 180 ° . The same is true for

the vaporization rate perturbation. Note,

however, from the flat plate results that

for sufficiently high %(o_ / _ , high

or low _" this result may reverse itself.

It should be remembered at this point that the

velocity effect can be extremely strong because of the

raising in order of magnitude of I/M compared to the

pressure effect. Therefore, if a velocity effect goes

in phase with the pressure an important augmentation of

the pressure effect will occur. A caution at this point

is to note that if _ , P_O), and P(O) were normalized

by the steadystate quantities all the curves would

collapse to a single curve in the quasi-steady limit.

Viewing Figure 24-27, the following conclusions can be

drawn:
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i. The effect of _w is somewhat similar

to what would have been predicted by flat

plate results. P(_0) increases, _'_0)

decreases, and M_& /_ is little

changed with an increase in _w " The

normalized curves of _ (o) and Pr"(_

would show little change just as with the

burning rate perturbation.

2. As expected from the flat plate _ produces

strong effects. First, an increase generally

shifts the usual behavior to a higher

frequency. A peak develops in _¢_/_:

MF_ /_ )4 goes positive in the low

frequency range. _ (0) moves toward the

negative side but develops a stronger peak

on the positive side. Normalized by the

steady state value, however, P#(O) shows

no radical change.

3. The effect of _ is not as strong as

might have been believed from the flat

plate results. The main effect of an

increase in _ is to shift the curves to

a higher frequency. In the low frequency

range, however_ the same general trends as

for the flat plate are observed.
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4. _ has almost no effect except at high

frequency for P'_O). An increase in '

just shifts the curves to a slightly higher

frequency. \

Since the effects of Yo_ and _ were so

important for the flat plate in determining where the

imaginary parts of the burning and vaporization rates went

in phase with the pressure it is desirable to see more

closely where this happens for the stagnation point. Figures

28 and 29 contain these results. They are plotted for _ =i

and because of observation i. on p. 129 they should

closely correspond to the first order in frequency flat

plate results of Figures 15 and 16. Here, however, the

dependences are much milder. It can be se_en that for

sufficiently high _ ]_ and _ M_]_ _ _ can

be driven in phase with the pressure for an appropriately

constructed standing wave. It is known, however, from

the asymptotic behavior of this quantity that it must

change sign at a rather low frequency if it is positive

for a while. Observe that P((O) cannot practically

be made to go negative. Therefore, this is a result

contrary to those for the flat plate.

E. Feedback in Combustion Systems

It should be apparent by now to the reader that

prime emphasis in the results has been given to components

of the burning and vaporization rates which can be in
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phase with the pressure for either a travelling or standing

wave. The reason for this has been previously indicated;

these components determine, in many practical combustion

systems, whether or not a periodic wave can even exist

in the system. It is now well established mostly from

theoretical work concerning rocket combustors (29, 30, 31)

that energy or mass release perturbations per unit volume

under the action of an acoustic wave must be in phase

with the pressure and of sufficient magnitude to overcome

certain damping and sustain such a periodic wave. This

is saying that these perturbations must increase the

rates per unit mass of gas locally in the chamber.

Damping is usually provided mainly by convection of the mean

flow out the chamber and by boundary conditions such

as a deLaval nozzle.

It should be clear that this is an intrinsic

feedback problem between the main combustion gases and

the mass-energy sources (droplets in the present work),

although other factors may enter such as interaction with

the injection system. However, what has been studied

here is a forced oscillation, not feedback, of the

droplet burning process, and confusion can arise. The

reason for this is found in many types of perturbation

problems. If flow velocities inside the combustor are

sufficiently small so that Mach numbers are small, the

wave equation applies to the chamber gases under small
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perturbations.

solutions can be found which ape neither damped nor

amplified in time (the acoustic modes). Such solutions

ape correct up to terms of 0 [ M] compared to 0 [ i] .

Now since the droplet burning process is what is creating

the terms of 0 [ M] (The mass-enePgy souPce to create

the mean flow), it will also contribute terms of this

omdeP under perturbation unless an extreme resonance takes

place. Thus, a wave of 0 [ i] containing terms of O[M]

acts upon the burning process of 0 [ M] to create a feed-

back in the ter_ of O[ M] of the wave. Therefore, the

burning process appears forced by a wave of 0[I] and

the Peal feedback takes place in 0 [ MJ But this is

where the damping occurs so that it is clear that an

intrinsic feedback system is under consideration. This

argument is, of course, rough but has all been put on

rigorous theoretical ground and is common in oscillation

theory with feedback occuring through a small parameter.

It is not yet established whether vaporization

Pate or burning Pate perturbations or both ape the most

important quantities concerning this feedback to the

wave. Arguments can be given concerning the importance

of both. As such both will be concentrated upon. The

important questions ape I_) in what frequency ranges

does a strong amplification of these perturbation Pates

There is no damping here if M=O and pePiodic



- 138 -

take place and 2.) what is the magnitude of this

amplification?

Consider then by way of practical application

a simple standing wave in a chamber as constructed on

p. 105. Now, however, assume that many harmonics of

the fundamental can exist. In particular it is also

possible by a Fourier expansion to consider a "standing"

shock wave pattern as studied by Sirignano (32) in

relation to rocket instability. Each harmonic then

has the form

n = I_ 2_ 5_ ....

where _M is the fundamental frequency ( _M_T_O[M] )

and _ is the chamber variable measured longitudinally

from one boundary. Consider the droplets to be located

at an _ such that _(,_) and _(nTr_)

have the same sign,'i.e., always on the left hand side

of the first pressure node for the harmonic under

consideration. It should be clear that all quantities

of interest,m_/_ , _(O) , etc. take on the same

form as the velocity for a velocity effect and the same

form as the pressure for pressure effect;ithe proportionality

sign is replaced by an equal sign if the Fourier coefficient

i. That is, they are proportional to the right hand sides

of the proportionality relations above, respectively.
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of the wave type and the appropriate magnitude of

the result under consideration are multiplied to the

right hand side. In addition the pressure effect

must be multiplied by M if the same non-dimensionalization

scheme is used as used previously. By way of example

consider spherical droplets with 6 @ = 500/_

and _ = 50 ft/sec. Then the characteristic

diffusion time is _/_ = 3.29 x 10 -5 sec, 1 e

corresponds to a Reynolds number of 67 if /_2 = 10 .3This

poise and _ = .05 ib/ft 3. For a sound speed of 3500

2
ft/sec the Mach number is .01_.

The wave dynamic problem is, however_ usually

solved with respect to a different non-dimensionalization

scheme. Velocities are refered to the speed of sound

and pressures by the ambient pressure. To put this

treatment in this scheme the velocity perturbation

becomes divided by M and the pressure by I/ M. Now

the pressure effect appears as 0 [i] and the velocity

effect as 0 C I/M_ . Then if -, _ is 0 C M_

or greater the velocity effect is as strong or stronger

than the pressure effect. This point should be strongly

emphasized: even though the droplets may be near a

velocity node the effect may be extremely strong since

i. This is of the order of the characteristic times of

some high frequency oscillations in liquid propellant
rocket chambers.

2. This is a relative velocity Mach number. Actual flow

Mach numbers are generally substantially larger in actual
combustors.
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velocity is raised by an order of magnitude in I/M

in the unsteady state.

Note then that for the wave construction only

the real parts for the pressure effects are in phase

with the pressure for the fundamental and any harmonic.

However, the real parts for the velocity effect, while

90 ° out of phase with the pressure for the fundamental,

have components in phase for the higher harmonics and are

directly in phase for _ = _ . Simultaneously, the

imaginary parts move from in phase with the pressure

to 90 ° out as _ goes from 1 to _.

Discussion of the results in relation to this wave

construction are deferred until Chapter V.

F. Summary

Perturbing about the steady state solutions

developed in Chapter III, periodic solutions have been

obtained to the stagnation point and flat plate approximations

to the droplet burning problem. The stagnation point

problem yielded solutions over the entire frequency

spectrum while the flat plate lent itself only to low and

high frequency analysis. Certain correspondences in the

two cases have been pointed out. Attention has been

drawn to the vaporization and burning rate perturbations

as being of prime importance to the problem of combustion

feedback to an acoustic wave.
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CHAPTER V

REVIEW AND CONCLUSIONS

It has been recognized that the process of

droplet burning and vaporization in an actual combustor

is, of necessity, an unsteady process. Adding to this

the practical interest in oscillatory burning, it is

clear that unsteady analysis has been long overdue.

Since the complete unsteady problem presents presently

insurmountable mathematical difficulties the various

types of unsteadiness have been separately analysed.

This separation, of necessity, also introduces errors, but

errors which can be estimated. At least conditions can

be stated where this separation is possible. It has

therefore been possible to state certain criteria whereby

droplets burn in a near steady state and when it is

possible to consider periodic solutions of small amplitude

taking place about this near steady state.

To obtain this steady state one criterion is

that the liquid is not changing temperature in time;

the statement must be that the heat-up time is a small

fraction of the lifetime. For sufficiently low wet

bulb temperatures compared to the ambient _as temperature,

sufficiently small ratio of liquid specific heat to gas
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specific heat and sufficiently small vaporization rates

this is true. Another criterion has been found to be

the fact that initial conditions of the gas phase

should relax to the near steady state conditions in a time

short compared with the droplet lifetime. For a strong

convective stream, small vaporization rate r large

liquid to gas density ratio and sufficiently well behaved

initial conditions this criteria is met. So that

unsteadiness is not felt due to a contracting droplet

radius and so that in the investigation of a periodic

solution the droplet surface moves neKligibly far during

a cycle it is necessary that both the diffusion time and

cycle time be much shorter than the lifetime. For

a moderate enough convective stream, large liquid to

gas density ratio and small transfer number this criterion

is usually satisfied with the cycle times of the order

of the diffusion time. The errors made are of the order

of these time ratios when the steady state model is

assumed valid. The periodic solution is asymptotically

valid up to the order of these ratios.

Periodic solutions for what was called a "pressure

effect" were obtained for some simple models of the

vaporization process under somewhat artifical boundary

conditions. These artifical conditions had to be introduced
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precisely because of the model simplicity; convective

effects were not properly taken into account. It was

seen that for frequencies commensurate with the diffusion

time extremely strong response in the vaporization rate

could be expected. In the limit of very high frequency

it was found that the vaporization rate perturbation could

become infinite as the square root of frequency but that

the burning rate perturbations would remain bounded.

With the aid of the simple plane model it was possible

to investigate the effects of periodic liquid heat=up

and finite evaporation kinetics. It was found that

for many practical configurations these effects can

be ignored.

In order to treat the convective effect properly

the asymptotic limit of a high free stream Reynolds

number flow over a liquid body was considered. What

resulted was the investigation of the binary fluid

boundary layer for the stagnation point and flat plate

at low free stream Mach numbers. The condition for the

existence of a flame at the stagnation point were

investigated. It was found that only for sufficiently

low Reynolds numbers, large droplet sizes, high temperatures,

and fast reaction kinetics could the pressure be low enough

from a practical point of view and still retain the collapsed

flame zone assumption. It was found from the steady state
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form ( m=

Table 3

theory that even with the collaped flame, a significant

fraction of the vaporized mass is convected into the

droplet wake rather than burned in the boundary layem.

It is perhaps best here to show that the

theoretical results are plausible when compared with

experimental correlations. Take the case YFw = .9,

= 0.2, and pure vaporization so that _o_/_ = O.

From Eq's. (1.25b and c) and the convective correlation_

Eq. (1.27), the average vaporization rate per unit

1
area is for high Re

rm= o.3 .A,-,ti+81 Re'l_ _ o.&9 Re _I_

Putting the stagnation point results in the same non-dimensional

_ ) there results from Eq. 3 62 and
e

IIz

which is, as expected, higher than the average over the body.

Apparently, therefore, the flat plate and stagnation point

results can be empirically matched to obtain the correct

total vaporization rate at high Reynolds numbers.

A periodic solution was then obtained to the

linearly perturbed problem by introducing a lon_itudinally

travellin_ isentropic sound wave of arbitrarily small

amplitude in the free stream. This type of wave was

chosen for analytic simplicity; however_ because of the

I. Re on this page is based on droplet diameter.
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linearity any wave type may be built by superposition

of these. In fact, in any practical device such as longi-

tudinal wave must invariably be a standing wave in order

to satisfy the combustor boundary conditions. It was

found possible to solve the problem for arbitrary free stream

Mach number by splitting the problem into two parts; one

was primarily to compression of the film and was called

a pressure effect analogous to what was studied for the

simpler models and the second was called a velocity

effect, primarily due to the changinK convective field.

However, it should be cautioned that this is in reality

a mathematical artifice and the distinction is somewhat

artifical; it happens solely because this is a compressible

fluid with the waves propagating at a finite speed through

the ambient gas (the characteristics on an x - t diagram

have a finite slope).

Striking similarities were found between the

flat plate and the stagnation point results for both

high and low frequency. It can therefore be conjectured,

and there is no theoretical justification for this, that

the qualitative behavior of the flat plate can be

constructed from a knowledge of the low and high frequency

results fop the flate plate, and the entire spectrum for

the stagnation point. Figure 30 represents this conjecture.

The low frequency end of the velocity effect is constructed
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from the quasi-steady and first order in frequency results

using the stagnation point observation that real quantities

retain the quasi-steady results and imaginary quantities

are nearly linear out to &4 of O EI]. The high

frequency results use the asymptotic high frequency results

for the flat plate. The mid-frequency range should, of

course, only be interpreted as a rough guess based on

the two endpoints and the stagnation point behavior. The

pressure response is constructed in a similar manner; only

real quantities are presented.

Then consider a droplet as acting partly as

a flat plate and partly as a stagnation point. Consider

first the pressure effect for the fundamental mode so

that the droplets are considered very close to a velocity

node. With increasing frequency (shortening the chamber

length) the vaporization rate component in phase with

the pressure will slowly decrease and finally move 180 °

out of phase with the pressure at _-,,2_ A strong

negative peak will then develop as the frequency is

further increased. Only at very high frequencies will

the response become positive again. The point of the

first sign change can be strongly and practically control-

led by a change in YO_J_ • The magnitude of the quasi-

steady results should be between .25 and 1.25 when normal-

ized by the steady state vaporization rate; these are

generally the magnitudes of the stagnation point and

i. Possibly the flat pl; _e shift does not occur until _4.
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flat plate, respectively. 1 The same behavior is noted for

the real part of the mass burning rate perturbation with

one important exception: for normal values of "_ and

the burning rate will never return to being in phase with

the pressure once a sufficiently high frequency level is

reached. The point of the sign change is mostistrongly

influenced by Yo_i__ and _ . Also, for sufficiently

high Yo_ _ and presumably for _ a small peak will

develop in the response at low frequency in phase with the

pressure. The magnitude of this response is usually

approximately i.

Continuing, the velocity effect is added. It

should be clear that shortening the chamber length must

bring in this effect if the droplet location is fixed.

Therefore, at high enough frequencies in practical con-

figurations this effect must enter. For the fundamental

mode for sufficiently high _0 _ or _ it is seen that

there can develop a rather strong peak for the burning

rate in phase with the pressure at a rather low frequency. 2

The magnitude and frequency point of the maximum must

depend strongly upon how much a droplet acts as a stag-

nation point and how much as a flat plate. It must also

i

be primarily strongly dependent upon Yo_J_ . It is

therefore clear that combining both the pressure and

velocity effects can produce a reasonably strong peak

at low frequencies in phase with the pressure for the

burning rate. It is easily conceivable that the

I.

2.

This may easily be computed from Figures 7, 9, 12, and 20.

Recall that a velocity effect is much stronger than a

pressure effect.
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magnitude of this combined response can become much greater

than one relative to the p_essure effect alone. This type

of response requires that droplets are sufficiently far

from a velocity node. The velocity effect of the

vaporization rate perturbation is opposite for the flat

plate and stagnation point and little change from the

pressure effect alone should be expected, at least for the

fundamental. Recall, however, that construction of P£(_o)

may be strongly in error for the flat plate past

of 0 [i] and the strong positive peaking for the stagnation

point may be dominant, causing a strong augmentation of

the negative pressure effect peak.

Considering the higher harmonics, recall that real

parts of the velocity effect can be in phase with the

pressure. These are extremely strong at the low frequency

end (the quasi-steady results). Both the vaporization rat

and burning rate are augmented in phase with the pressure

except at very high frequencies for the vaporization rate.
1

Opposite effects come into play with respect to frequency;

i.) raising the harmonic increases the component in phase

with pressure but decreases the response magnitude and

2.) increasing the frequency for a given harmonic decreases

the response but would also move the droplet position with

respect to the wave position so as to increase the response.

If then, consideration is Kiven to the problem of

increaseing a chamber length where initiall_ say, _

the following sequence can be expected for

io Here the droplet position is held constant with

respect to the acoustic chamber.
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the burning rate components in phase with the pressure for

sufficiently high Y0_ and

i. There is a positive response for the

fundamental, out of phase with the

/

pressure. Consider only those harmonics

which still allow the droplets to be on

the left hand side of the first pressure

node so that _ n_ has the same

sign as _ ml;_ . Then the combined

pressure and velocity effects favor the

lower harmonics; the higher the harmonics

the less chance it has of being in phase

with the pressure. It is possible, how-

ever, that the first few have a positive

response.

2. As the frequency decreases the fundamental

response will go in phase with the pressure.

The normalized response can easily reach

O [ 1 ].i The fundamental will undergo a

maximum respQnse and then settle to the

quasi-steady pressure response. More

harmonics will be brought into play.

i. This is the known magnitude of response necessary to

overcome chamber damping in a liquid propellant

rocket engine. See References 29 and 30.
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3. The components for each harmonic brought

into play will become stronger in phase

with pressure. This response can easily

be much greater than 0 [i], approaching

0 [ l/M]. The second harmonic will undergo

a maximum response due to the effective

movement of droplets toward a velocity node.

_. The successively higher harmonics will go

through approximately the same history as

the second but with increased reliance on

the real part of M_f ]_& and the

movement towards a velocity node as

determining factors since the velocity

effect is most important for the higher

harmonics.

Concerning the vaporization rate, substantially the same

behavior will occur for the higher harmonics as for the

burning rate. If, however, the stagnation point behavior

is sufficiently strong the fundamental will depend primarily

on the pressure effect alone and no strong maximum can be

expected. Here comment is restricted to _ _ 5--. The

reason that higher frequencies are now excluded is that they

do not exist in practice for drop sizes of interest (75-500/_)

in high performance combustors.

In summary for the above, it has been seen that

the burning rate perturbation can undergo striking changes

with frequency for the assumed wave type if one assumes a

droplet acts partly as a flat plate and partly as a stag-
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nation point. The most important parameters in determining

this behavior are _ and Yo_i. The velocity effect is of

paramount importance to this behavior. Conclusions concern-

ing other wave types, quantities of interest, liquid body

configurations, or frequency levels can easily be drawn

from the conclusions of Chapter IV. The primary type of

response which stimulated this entire work was, however, that

immediately investigated above.

Definite conclusions concerning actual combustor

performance have been avoided as much as possible. There

are several reasons for this and they are linked to areas

in which further research should take place. First, in an

actual combustor the droplets are not at a fixed location

but are moving at a speed of the same order as the gas speed,

usually. Secondly, the free stream relative to the droplets

is not a constant one nor is the mean flow constant with

respect to the chamber since gas is continually being evolved;

the relative speed effect has been discussed already and

generally been found to be unimportant as long as a high

Reynolds number flow exists throughout most of the droplet

lifetime , but the changing mean flow effect has not been

treated. Also, the effect of other boundary condition

gradients has not been treated.

Thirdly, actual average steady state ambient

boundary conditions are not known with any precision and,

in many cases, not even roughly. Under this effect can
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also be included the fact that the relative direction of

the mean flow over the droplet can easily change once

during its lifetime if at the injection point the injection

speed is higher than the gas speed. Fourth, in many cases

it is not possible to justify the existence of a collapsed

flame or even burning in the forward stagnation region.

The fifth point, not even touched upon, is the effect

of turbulence. Sixth, the slip effect at the droplet surface

may be important. Seventh, the droplet can easily undergo

distortion oscillations of the same frequency as considered.

Eighth, research should be done on transverse perturbations

about a longitudinal mean flow since transverse oscillations

are quite important in practice. This represents a much more

difficult problem since a transverse perturbation would

essentially be a low Reynolds number cross-flow, time dependent.

Finally, and probably most important, a great deal of mass is

carried into the wake and not burned in the leading edge

boundary layer; therefore, wake flames deserve to be treated

in the unsteady state. It is worthy of note that the typical

diffusion time for such a problem would be much longer, _#

being the characteristic length rather than __#/_ •

Therefore higher dimensionless frequencies are practically

possible.

The remarkable fact is, however, that a blind

application of the above theory is observed to explain many

of the qualitative features of longitudinal rocket engine
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instability (33) if the burning rate perturbation is

accepted as the appropriate feedback function. Work

concerning this application should continue.
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TABLE I

INITIAL CONDITION RELAXATION TIME, tic/tdi f

(Initial Condition: y o(r) = l)

B

1.5

2.0

3.0

5.0

i0.0

5

.0388

.1446

.6170

2.3880

10

.0380

.1530

.6054

2.4600

15

.0372

.1489

.5964

2.4615

13.1050 12.6600 12.0615

2O

.0364

.1425

.5860

2.4260

11.9340
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TABLE 2

0

_0 - '

.,4

YF w

F(0)

F"(O)

F'f

0.,4 "_mE f

o.o5
LF,,(o)

0.15

0.3

0.5

F(0)

F"(0)

F !
f

-fT_f

F(0)

9f

T1f

F I!
f

Ff
FFTT--

FTf

f

0

0

-.022661

.45327

0

.45327

.02266

-.06326

42410

- 06362

0

.06362

.11621

.38735

0

-.11621

.38735

-.17396

.34793

-.17396

.3479

.]739(

FLAT PLATE - STEADY STATE

0.25

.24247

.625

.32252

.25802

•20224

,79821

.00'717

1/2

• 3311(]

-.12674-.27907

.3800 .27901

i

0

0

-.1466 -.29547

.35648 .26861

2.320123.04840

.875911.17224

.83333 .90909

.23164 .14966

.06949 .08231

-.18250-.32511

.34219 .25008

1.681822.45562

.33894 .59723

.625 .76923

.34837 .26726

.13935 .17372

-.22855-.36302

1 294032.06915

.0564

45455

.3713

.2042

-.2790 -.40447

.2790

1.044_i

-.i118(

1/3

.3527

.2645 •33110

0.7 0.8

-.5301C

.18562 .1325]

-.5404]

.17837 .1271

3.67120 _4.10731

1.30117 1.3480(

.93333 .9411

.i1721 .i058_

.08791 .0899

-.5589

.16549 .1176

3.10614 3.5528

.72429 .7723

.82353 .8421_

,22388 ,2068

,19029 ,1965'

-,49819 -.5825E

2.73325 3.1876;

.34889 .3913 c.

.2869 .2_71_2_/1
.7 941 .29833

0.95

-.43317 -.65385 -.73686

.07264 .03878

-.44592

-.46889

-.66086

.06956

4.81791

1.38671

.94737

-.74148

.0370T

5.523_4"

1.4032"9"

.95

.09646 .09242

.09164 .09242

-.67344 .7497

.06414

4.27458

.85714

5

1.0340_

4.98725

.81273 .83036
T

.53008

.19212

.20181

-.68935

3.91864

.42808

.75000

.25678

.30814
i

.70653

.8636

.18561

.20417

-.76017

4.63782

.44432

.76

.25006

.31257

.026_0.13252 .09357 .05047

2.46658 2.9259C 3.66446 4.38978

,08705 .12_

.58333 .6153

2973_

.3866]

.30869

.37043

.15115 .16471

.64286 .65517

.40085 .4073mFf
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TABLE 3

YF
W

Yo_,/j
!

o F(0)

F"(0)

')f
Ff

l_'f

F"
f

,i

Tf

B..

"IFf
[

STAGNATION POINT - STEADY STATE

q = 12 "['= 0.2

0.25 0.5 0.7 0.8 0.950.9

-.68460

.24023

i

i

11.25

0

-.80730

.i@176

1

i

23.75

0

0.05 F(O)

,F"(0 )

_f

-.0211q

.73703

0

-.02114

-.1469E-.30434 -.4728_-.58641 .74657 .87336

.63091 .48451 .39278 .27781 .20267,76845

1.764092

.873711

,2

0 .9648
F"

f .73703 .1575

Tf 1.3666

.03573
B

mFf .04227

.2857

.1323

.28211 2.7008912,97878 3.40802

1.277021.32315 1.36320.15382

81.02357

3 .03713

7i1.47273
i .78571

7 .15628

1.040251.04546 1

-.00608-.02102 -

1.50667.1,51765

1.78571.3.03571

.16689 .17088

.04962

3.80750

1.38253

1.05148

.03363 _.03951

.52632 1.53

,78571 14.2857

.17435 .17603

0.15 F(_)

F"(0)

-,36362

.77371

1.68443

r-.54485

.60050

2.07435

-.05952 -.19481

.70232 .90371

.... 0 1.1941_

I-.05952 .40223

0 .89514

•7023; .38586

.2 .....

.05770

.11904

.8288£

-.66672

.48495
i

2.33014

-.83735

.33548

2.72455

-.96100

.23593

3.09368

Ff .68791 .88361 .93189 .95515

F'f 1.13871 1.15409 1.1610_

-.02048 -.05880 -.07715

2.38474 2.42857 2.44545

1.82692 4.03846 8.4615_

,41010

F" f

Tf

1.06330 1.11993

.13782 ,02307

1.82500!2.2 2.34118
i

.20516 .5 1.0897 L

• 28666 .36023. ,_961i .42240mFf .42832
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TAB LE 3

STAGNATION POINT - STEADY STATE

q : 12 _': 0.2

t

0.8 0.9 0.95YF w

F(O)

F"(O)

Df

Ff

Ftf

F" f
T

f
b

00

r_rf

0 0.25 0.5 0.7
L _ =,I

-.10925 -.256071-

,65819 1.00833

0 .87205 1.31606

I ,.n

0.3 -.93733 -1.0752E

.39708 .2723:

-.10925

"0

.65819

.2

.06819

.1%_580

.79656

.61727

12.2

,16667

.44643

i

.435%8 -.§28521-.75770

• 90929 .71817_ .58082

.3_808

.07960

.31916
t

.58085

1.67377

.4970@

1.19434

.13795

3.28

.75758

.65353

1.90818

.55403

1.23523

.... 06165

3.4

1.25

.68296

2.27029

.60559

1.27001

-.00944

3.5

2.72727

.70952.21851

2. 61063

.63065

i. 2858£

-. 0442.c

3.544

5.6818_

.7223

0.5 F(o)_
T

F"(0)

)f
Ff

F I
f

..... l!

Tf

J

_Ff

-.1645_

.61031

-. 16453

.61031

,2

.07353

.32907

-.32467 -.85177 -I.03827 -I.17979

.66629 . 45313 . 30583
1.95470

i. 0756__5

.67629

-.07940

.6952

.8o15
2.46667!

•14706 J

.60572

-.51507-.71695

1.019.8.0 .82079

1.07470 1.40332

.10082 .22290

1.06478 1.24092

3i : 3s s .32003
3.6 4.1666

.29412 .5882

.79931 .9139

1.61965

.27622

1.30817

.21895

7 4. 38462

.95588
4 .962351

.32597

1.36714

.11985

4.57143

2.05882

1.00697

2.27134

.35066

1.39508

.06859

4.65517

4.2647]

1.0289C
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TABLE 3

STAGNATIONPOINT - STEADY STATE

YO /j = 0.15 YF = 0.9
W

0.2 F(0)

F"(0)

_f

Ff_

F"
f

F"
f

-.71140

.22629

-.73762

.24562

4
i

-.76109

.26443

6

-.78246

.28277

-.80212

.30070

8 i0 12

-.82036 -.83735

.31826 .33548

Tf

Boo

mFf

3.19164 3.081262.98878 2.909562.84047 2.77931 2.72455
m

,78401 .81509 .84265 .86773 .89079 91212 ,93189_

.91556 .961961.00501 1.04_I.08336 iii19511.15409 j

.15100 .11321 .07676 .04151 .00731 -.02605-.05881

1.65714 1.91429 2.171432.42857
, ,

6.17647 5.25 4.56522 4.03846

.40032 .40821 .41555 .42240

.88571 1.142861.4

13.12500 9.5454617.5

.37206 .3824_ .39178

IY
0.0 0.i 0.2 0.3 0.4 0._ 0.7 o.q

12 F(O)

F"(0)

3e
Ff
Ff r.

F"

g

B_
h,

mFf

-.80841 -,82333-.8373E-.85053 -.86292-.87480 -.896£4 _.91712

.25499 ,29584 .3354E .37404 ,41166 .44844 -51979 .5886_

2.79029 2.75599 2.724552.69549 12.6683E2.64317 2.59706 2.55583

.91854 .92528 .93189 .93822 .94411 .95011 .96128 .97186

1.14586 1.15005 1.154091.15809 1.1621_i.16604 1.17382 1.18142

-.04222 -.05067 -.05881-.06686 -.07511-.08287 -.09855 -.11390

2.4 2.41429 2.42857!2.44286 2.457142.47143 2.5 2.52857

3.75 3.88889 4.038464.2 4.375 4.56522 S S,$2632

.41877 .42060 .4224C .42413 .42576 .42740 .43049 .43344
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APPENDIX A: THE CHARACTERISTIC TIMES OF DROPLET HEAT-UP,

INITIAL CONDITION RELAXATION, AND UNSTEADY
VAPORIZATION

Under the assumptions listed in ChapterII an

energy balance at the droplet during the heat-up period

yields

(A-l)

¥_ 'T_W -c_-_ _
Integrating,

L_c__-_ = -C_,_ _

Combining Eqs. (A-I) and (A-2)

distribution for no mass transfer (Laplace's equation).

This is

(A-2)

For high temperature vaporization of volatile liquids the

wet bulb temperature is quite small compared to "_. There-

fore the logarithmmay be expanded and _ evaluated when

the wet bulb temperature is reached, "_. The heat-up

The gas temperature gradient at the droplet surface is

evaluated from a solution to Eq. (l.21d) for the temperature
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time is therefore

-_" Lb'- TJ, + O[ (A-3)

Consider now the problems of surface contraction

and initial conditions relaxation. Repeating the _overning

system of equations in Chapter II Eqs. (2.1a)-(2.4),

!,

=O
(A-4a)

...L T.I: + v T " I _-r )r (A-4b)

.[T=I

Tt5 o)=T o tr)

(A-4c)

(A-S)

(A-6)

An exact solution of the system of equations in

series form is first attempted. First, from Eq. (A-4b),

using E_s. (A-4a) and (A-4c),

(r_Tr- #-.T),.--_O
(A-B)

This is immediately integrable over r ; applying Eq. (A-7),

-<.-) (A-9)
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A
where m Lt±) is the mass flow rate at the liquid surface

which is, of course, a function of time. It may seem

fruitful to obtain a single equation in -[- alone by the

elimination of _ from Eq_. (A-Wa) and (A-S). However,

such a procedure requires the use of a more elaborate

expansion procedure than that which may be used if the full

set of equations is retained. First note the appearance

!

of four fundamental parameters in Eqs. (A-_a), (A-5), (A-7),

and (A-S); these are _, A , "_ , and _t, where BoG

may be derived from A and "_. Another useful parameter

which may be derived is the Spalding transfer number:

B = B___,-T)= I-_

As has been previously mentioned _ <<I in a great many

problems of interest. Therefore, a Taylor series expansion

of the solution in I/_ is assumed valid:

A similar expansion is assumed to hold for the other variables

of interest _, 9 , etc. Substituting the expansion into

the governing equations, the following system is obtained

for the zeroth order in l_:

r 2 T = Ar (A-lOa)
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A+.o_ =0
(A-10b)

_, Lo_ "T' co'+_ |
.(A-10c)

T "' [ r_"k*))±3 = %
(A-10d)

(A-10e)

T _°_Jr,o)= To Irl (A-10f)

_L c°) t cl r_J"°_
.]__o)) == __ : - _+ --

(A-10g)

The first order system is

--r

(A-lla)

_n_£1% _ _ r% Co)r- 9_
(A-llb)

,- j, _)T <.o"i: 0

) r

(A-llc)

(A-lld)

T_,. _,,,r/0,1.,,..T ¢0',_%,°')%_'_: or
(A-lle)

T _'_{.q ol "= o
(A-llf)
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(A-llg)

An important observation is immediately apparent. The initill

conditions, Eq. (A-5) or Eq's. (A-10f) and (A-llf), can never

be satisfied with this scheme since, as in the quasi-steady
|

solution, the time derivative of the order of the solution

being considered never appears in the equation. This could

have been seen at the outset and is analogous to problems

that arise in, say, ordinary differential equations when a

regular expansion in terms of a small parameter appearing

in front of the highest derivative is attempted. The usual

procedure in such a case is to find a scale transformation

of variable. While this procedure could have been adopted here,

no transformation yielding equations amenable to exact analysis

has been found. Now, although the idea of an exact solution

has been abandoned, this solution should yield information

concerning one of the two types of unsteadiness which enters

the problem. Assumin_ that the initial conditions which will

be demanded by this solution can be provided, information

should be gained concerning the unsteady effects introduced

by the contracting droplet radius. In particular, under the

imposed conditions, a correction to the quasi-steady vaporization

rate should be obtained.

Proceeding op tlhis basis, Eq's. (A-lOa) and (A-lOb)

are merely the quasi-steady equations. They may be readily
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integrated to yield

T _°),-A = e
B_

(A-12)

Using Eq%. (A-10c) and (A-10g), the familiar D 2 law may

be obtained;

where

to,:' z _, _(J+s}q =I-
C

(A-13)

r'L¢Q)
C-- I- ---

It is now convenient to define the reference time,

t_ , to be the quasi-steady droplet lifetime.

when rL_'_)=O which, for a given set of numbers

Then t = i

and C, defines K for the problem because

---I
C.

Three convenient quantities are computed from

Eq. (A-12) :

(A-14a)

r = r,_ (A-14b)

(°)= __(°J(T(°)*A)
Z r rd*__

(A-14c)

Then from Eq's, (A-10c), (A-llb) and (A-14c)



A-7

to) (.,r

Tr<o>

Using Eq's. (A-15), (A-11d) and (A-14a), Eq. (A-lla) may

be integrated to yield

"- Lo) { !
V'rt rL(.o ]

i-o_ = r_ j_ _ e - !,-.)i-,_ _--b-_¢°l f_ ')

J q__o,2B_

4-

(A-16)

Succeeding order solutions may be readily carried out since

only the form of the inhomogeneous parts of Eq_. (A-lla)

and(A-lib) will change. However, only the first order

solution will be carried out here. The essential singularity

at r=O is excluded except for the final instant of

vaporization. However, the singularity at rL¢°i=O will

invalidate the expansion procedure unless the droplet

vaporizes faster than at the quasi-steady rate. That is,

unless r_(@) _ r_ t°_ 6%] the solution for T (I) blows

up before the droplet actually disappears. Applying Eq. (A-lle)
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where

It is now desirable to make the assumption that

----- I co._.T

q(**

This is in accord with some observations on burning drop-

lets or requires an approximately constant Reynolds number

in the case of convective vaporization. This assumption

leads to the result that

r_ °) _ I
• " "" = _-C (A-18)

Finally, using E_s. (A-llg), (A-13),(A-17),and (A-18)

along with the quasi-steady solution

C

and the boundary condition

cLu} (o) = o

the following solution for fLU)

](I-%Iv2
Caj

is obtained:

t- 9(o)te,)Ft.coJ(_.,) _i (A-19)
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The condition for the expansion to remain regular is then

since the integrand is always positive.

Since the above analysis gives no information

concerning the relaxation of the initial condition, this

problem must be treated separately. Consideration Will

be given to a porous sphere continually wetted with

liquid at the wet bulb temperature of a surrounding high

temperature gas into which the sphere is suddenly thrust.

Thus, the initial conditions are presumed known and the

droplet radius remains constant in time (r L= | )

It is convenient to adopt

l-_ --TJ

- -r'J

as the independent variable, Then the energy equation,

the boundary conditions, and the initial condition become

the following

(A-20)

= I (A-21)

where _ has been contracted by

(A-22)

= _t (A-23)
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It is desirable to convert Eq. (A-20) into a linear form

so that The powerful methods of linear mathematics may

be used. The assumption will be made that the density is

not a function of time, but remains The function of

distance as specified by the initial condition. This

will clearly abandon the state equation, but through

Eq. (A-4a) this requires that V(r) is not a function of

time. It is still hoped that the behavior of the relax-

ation of the initial condition to The steady state

condition is not seriously affected by this simplification,

at least for initial conditions which do not radically

depart from the steady-state conditions.

Under this idealization it is possible To adapt

a method developed by Frisch (13) to obtain a useful

result. Eq. (A-20) may be written as

(A-24)

where _r is a linear operator in r defined by

9 c_ _tr _ r

Define a steady-state solution given by

under The boundary condition

(A-25)

(A-26)

(A-27)
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Define a relaxation time lag as

(A-28)

where mr is some other linear operator. If _r_|) _(r)

describes a typical relaxation time that the temperature

takes to come to steady-state. The interest here primarily

concerns heat trahsfem so that from here

be considered.

Let _4.v_ %) = _L5%} "- _'¢'5)¢,r')

is subject to

on d r- will

so that

(A-29)

(A-30)

Defining a Green's function

subject to

(A-31)

(|,r') = G (r_ ,r')=O (A-32)

yields as a solution to E_s. (A-29) and (A-30)

_S %
I

Substituting Eq. (A-33)into Eq. (A-28), using Eqls. (A-22)

and (A-26)_ and providing the order of integration may be

(A-33)

justifiably changed,
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(A-34)

Thus the problem is reduced to finding a solution to

E_s. (A-31) and (A-32). The Green's function may be

written

_,_,a _/r'r ^ _ _^
G(5"')-- .s _ e = .l(_-""__c - )(_"'de'_','÷)H(,..t,..i

(g_- e-"'@)k

r _lr
+ (e/_/r'_ e- g)_ ¢ _ _ ¢Vr+) H [-r_r_ (A-3s)

where H is the Heaviside unit operator. The greatest

interest is at r_ i so that substituting Eq. (A-35)

into Eq. (A-34) and evaluating at ,

TO,,:
I

The steady-state solution may be obtained from the previous

problem:

At,- _)

so that the time lag is

--O.£_')_r' (A-37)

This integral blows up if r-+

of r . However, practically

convection, burning, or space limitations.

time lag to a physical basis by Eq. (A-23),

is extended to large values

_4 is kept finite by

Converting this
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APPENDIX B: THE VAPORIZATION RATE RESPONSEOF A PLANE
LIQUID SURFACETO PRESSUREAND TEMPERATURE
OSCILLATIONS

Consider a one-dimensional vaporization model

with the liquid surface always maintained at x = 0. Assume

a boundary M =_ may be imposed where the temperature

and mass fraction of the liquid vapor are known. This may
\

correspond to a flame surface, the outer edge of a boundary

layer, or some type of mass absorbing, heat releasing

surface. It will further be assumed that this boundary

remains at a constant position in time. The reference

quantities on p. 8 of Chapter I are

Retain assumptions 3 , 4 , 9 , and i0 of pp. 12 and 13 of

Chapter I. Then allowing the average values of the

transport properties to be time varying as explained on

p. 34 the equations for the diffusion layer are

Continuity _t + rn_= O (B-l)

Mass Fraction _K,q-_'_ = L_e _Km (B-2)
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Energy _ + _ = _ + _-_P,

Diffusion

(B-3)

(B-_)

State p = yl-
(B-S)

In the steady-state Le =_= I . The heat transfeP in

the liquid must be considered, so a semi-infinite liquid

supface is treated. The energy equation for the liquid

is

The boundary conditions are

T(o,t) _-ro t_

T (,,t)= T_(t)

Tjo, t) = "%(#)

l_T_(o,z) = mC% #)

_i ,I,x,_,t)= 0_(o,i:)

y_j- _C[To(t)_ equilibPium

(B-B)

(B-7)

It is assumed for simplicity that _ is constant in time,

i.e., the latent heat is not varying I Although it must

vary if To(t ) is non-steady it will only yield the same

i ! ii

i. Boo is based to Tf .
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order of variation in the results as the variation of _-o[%)

It is the partial purpose of this section to show that T o

may be considered stationary in time with only a small error.

It is assumed that the liquid is at its "wet bulb"

temperature in the steady state so that the steady problem

has all heat transfer going toward vaporization, not

liquid heat-up.

Now the existence of a periodic solution to a

perturbed problem is investigated by assuming

K=I +xe

rn ,= _ + MOO e_t
(B-8)

Le-'- I + ,_' e ;.,.,.,t

where the time dependent perturbation quantities are

considered to be arbitrarily small so that products and

squares of perturbation quantities may be neglected. First,

by the use of Eq's. (B-5) and (B-l) Eq. (B-3) may be

directly integrated with respect to the space varilble to
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yield

(B-S)

By use of Eq. (B-l), _n may be eliminated from Eq. (B-9)

Introducing E4 s" (B-B) into E_s. (B-I), (B-2), B-5), (B-6)_

and (B-10) the steady state set is obtained

& (B-If)

(B-13)

(B-IW)

(B-15)

and the perturbation set

i_ _ +Mx =O (B-16)
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-- y. - _ _ = M_'.' -ZV." (B-IT)

'¥

(B-18)

(B-19)

B-20)

The solution to the liquid phase problem, Eq's. (B-15) and

(B-20) is easily written

TL:_

z#ZD-Y4x (B-21)

so that if _-t(_ =O there is no heat transfer to the

liquid even in the time dependent case. From the equilibrium

interface condition in Eq_. (B-7) the perturbation form

may be written as

_F co)-- b_(o)

For normal fuels the slope of the partial pressure vs.

liquid temperature at the saturated vapor line is large
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( b is of order i0). Therefore since only reasonable

magnitudes of _F(_ are expected to be necessary to

carry out the perturbed mass flow, _Y'L(o) should

be small. Assuming _(_=O the mass fraction problem is

decoupled from the temperature problem if the only interest

is in the mass flow perturbation at the Surface. This

problem will be investigated first. In Eq_. (B-7) assume

(B-22)

or a polytropic temperature perturbation at the outer edge

of the film. Further assume that the average gas thermal

conductivity is proportional to the _" power of the outer

temperature so that

The solution to the steady state gas phase problem,

Eq's. (B-II), (B-12),and (B-14), is

m = _ (,+s)

T+A= e
• "_

%-,=
(B-24)
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Under the present approximation Eq. (B-19) is rewritten

_-,,_[=_, ]_-,_.[_-(_A___ =

"T'A (_+A) (A..-MF (.°_) Z_,V' (B-25)

By defining new dependent and independent variables

(B-26)

Eq. (B-25) is transformed to

_ZA

(B-27)

The homogeneous part of Eq. (B-27) is of the hypergeometric

type and has the two linearly independent solutions

@= - '-+'_-;.nZ

g'= I

r=l
(B-28)

The particular form of Eq. (B-27) and transformation (B-26) was

chosen since _AI<| for most rocket propellants and the
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series development, Eq. (B-28), converges in the entire

interval. The recurrence relations for Eq's (B-28) are

r_-O

C.r÷ __ r(r-O ÷Ln 3e-l-Z[n
- (-r+,)2 _-r + _ 5.Cf+1)s

(B-29)

A particular solution to Eq. (B-27) is obtained by

inspection

(B-30)

The error made in actually computing the serie% Eq's. (B-29)_

may be bounded by standard methods but these details will

not be presented here. The complete solution to the

temperature pPoblem may be written

(B-31)
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where _ and _ are integration constants. However, _p

contains the unknown M w(_ . Then the heat transfer

condition at the liquid in Eq. (B-7) is employed so that

MF(o) -
(B-32)

Upon application of the two temperature boundary conditions

_'(_:O and _= _-=/_ E_s, (B-31) and (B-32) form
P

a system of three (complex) equations in the three (complex)

unknowns _, _, and _v(O). The above procedure fails

A_ O in which case the appropriate transformationswhen

are

and a solution may be developed similar to above.

With the aid of this simple model it is now desirable

to relax the assumption that _L[o| = O; if this relaxation

makes only a small difference in the results the effect

may be neglected in more complex models of the burning

process. Once this assumption_ relaxed the mass fraction

Eq. (B-17) must also be considered which introduces a great

deal more complexity in computation. Again a series

development under appropriate transformations may be obtained

for the homogeneous part of Eq. (B-17). The particular

solution is obtained as
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X

W( 9

where _/(_'; is the Wronskian

and

is assumed.

From Eq. (B-16)

O

and it is clear that the _F equation is coupled with

Eq. (B-19). The solution to Eq. (B-17) may be written

(B-33)

where _ and _ are undetermined constants. The particular

l

solution, Eq. (B-30), now contains terms in _) and _(o)

from Eq. (B-19). _3"_[O) is related to _rL[o) by Eq. (B-21),

_F(_ is related to _L(_ by the equilibrium condition.

The surface mass diffusion relation in Eq. (B-7) is

(B-34)
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Now Eqa. (B-31) and _-34) form a system of six (complex)

equations in the six (complex) unknowns _, _ , _ , _ , MF(o}

and _r_ ; six equations arise becuase Eq_. (B-31) and (B-33)

are both evaluated at two endpoints under the endpoint

boundary conditions. During the computation only the

case A-o has been looked at since this parameter is

usually quite small for high temperature vaporization.

One further assumption has been checked with this

model. It has been assumed above that the liquid-gas

interface is in equilibrium; therefore the kinetics of

evaporation have been ignored. If the evaporation process

cannot take place as fast as demanded by this solution,

these results are in considerable error. The evaporation

rate, is governed primarily by the difference between

the actual partial pressure of the fuel vapor above the

surface of the liquid and the equilibrium partial pressure

corresponding to the liquid surface temperature. Other

parameters than those included in the main theory must enter

since a molecular collision process is governing. This

may be avoided by merely assuming that in the steady state

there is a fixed percentage mass fraction drop between the

equilibrium surface and actual gas. In the unsteady state

a new unknown is introduced, the actual gas fuel mass

fraction and a new equation

M_ (eJ
--_r$ °) equilibrium - _ r (°) actual
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as the kinetic equation. The effect of this has been carried

out for a severe, but probable, case of 10% mass fraction

drop in the steady state.
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APPENDIX C: THE BURNING RATE RESPONSEOF FUEL DROPLETS
IN AN OXIDIZIIfG ATMOSP}{EREDURING SPHERICALLY
SYMMETRICPRESSUREAND TEMPERATUREOSCILLATIONS •

Consider the configuration of Figure la under

assumptions i, and 3-10 on pp. 12 and 13 of Chapter I.

Choosing the reference quantities

the dimensionless equations for the gas field become

J%

rn r + r z 9t--O
(C-l)

(C-2)

y,"_'T_ ÷ ,%T,.= (,'-"-T,.),..+ ._ r_t
(C-3)

p=gT
(C-4)

r_XKr _ _ Yk ^
(C-5)
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Now investigate the existence of a periodic solution to

the perturbed problem by introducing

T= _C_) + D-or) e L,,.,Y

6jt
P-- i+'4e

Z_T

= _II_C r) 1" (It) __

r_- _ + R_L_:

(C-6)

where the time dependent perturbation quantities are

arbitrarily small. Note that no perturbation in the

transport properties is being considered. Substituting

Eq. (C-6) into Eq's. (C-l) - (C-S) and neglecting

products and squares mf perturbation quantities yields the

steady state set

_ m'

.,, ,=._, "1'w

(C-7)

(C-8)

((]-9)

(C-10)

_i w% W_ _k
(C-II)
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and the perturbation set

M + _r=_=O (c-12)

;%

(C-13)

(C-14)

(C-15)

(C-16)

The boundary conditions for the collapsed flame

zone model with an equilibrium liquid-_as interface at

the droplet surface are

A _£r_) + heat to droplet
rzTr (r4 .=

=O

(C-17)

q"(IC_ = % is continuous

y_(r_)= _=(_) = 0

q-(_) ----[_= specified

_[_) ='_o_ specified



C-4

It is fortuitous that for many hydrocarbons

A= _ -_ _<I
%

since assuming A=O simplifies the algebraic manipulation.

Then one parameter is lost by replacing B+ with %/_ .

She solution to the steady state problem yields the

following familiar equations:

Fuel Side

V_-,= (_F_-,)e _ (-_'--_)

Oxidizer Side

General

j _

=1+

I - _).-"

4

J (C-18)

These should be compared with E_s. (1.25) and(l.26) bearing

in mind the difference in reference quantities. The boundary

conditions for the unsteady problem deserve some attention

since the flame (line heat source) is moving in time. It is
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assumed that any quantity may be evaluated at the flame

by continuation from the steady state region. Therefore,

if _(r) is the space-dependent perturbation

The derivative is taken on the side of the flame of interest

even though this derivative may be discontinuous at the

flame. This is a common procedure in perturbation

problems and its validity will not be discussed further.

Then the conditions (C-23) for the perturbation problem

become

¥

_o (_) = O
(C-19)
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It is assumed above that all heat transfer at the droplet

surface goes toward supplying the latent heat of

vaporization and that none changes the droplet temperature.

In the steady state this is equivalent to assuming the

attainment of an equilibrium "wet bulb" temperature for

the droplet. In _he unsteady problem it is assumed that

this contribution is small. The validity of this

assumption is discussed in Appendix B. It is also assumed

that the oscillation is isentropic at infinity. As will

be seen this is the only consistent possibility.

One of the most interesting quantities is

M_) _2"2_ R_/_z ; this is the perturbation in the

mass burning rate. To obtain this function the complete

droplet problem must be solved and not just the energy

equation considered as in Appendix B. With this in mind

an exact solution of E_s. (C-12)-(C-16) subject to

conditions (C-19) is attempted.

It is usual in diffusion problems that an

expansion in powers of the frequency is a convergent one,

although it is not practically useful for high frequencies.

Therefore, such an expansion is attempted

r% "-- O

(C-20)
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Substituting the expansion in Eqs. (C-12)-(C-16) and

collecting like powers of the frequency

M_ej 1=0

_-co," _r (, _" ^ )a-F- _5/_./<:3-_ =

-F - -F'--) "=

"_ co) _,Ivl
I-2.

I-.2.

(C-21)

(C-22)

and for n >1

/
.,,%
M c_) _ rztrC"")

-----o

4

(C-23)

It will, however, _e shown that this procedure diverges.

An integrating factor for the _r and _ equations, (C-21)-

(C-27)_ is
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Eq's_C-21) represent the quisiqsteady perturbations which

most have a solution since the steady state is stable to

a static perturbation. In fact

and since _'c_ I/?z this integral obviously converges

if taken to c= _ . Consider, however, the solution

to the problem of first order in frequency. _O) blows up

as r 3 as r _ _ . The solution for _'_'!

be formally written

tT(')÷ co.,l_nT

("e- &l"

may

However_ the integrals on the right hand side blow up as r

to the first power and also do not cancel one another. All

subsequent powers of frequency yield solutions which blow

up as r" where _ is the power of frequency considered.

The conclusion is Peached that there is no solution for

arbitrary frequency if the outer boundary is cast to

infinity. The significance of this is discussed in Section B

of Chapter II.
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There is one solution for this problem which can

be obtained, the case in which the frequency becomes

large. The frequency as used here is the ratio of a

diffusion time to a cycle time, and the physical significance

of a large frequency is the inability of the diffusional
/

processes to keep pac_ with the oscillating field. Time

mates of storage (mass, energy_ etc.) become so large that

the diffusion mechanisms cannot smooth out the field.

As such, rapid changes in physical quantities take place

only near the boundaries and these quantities tend to be

very uniform away from these boundaries. If, then, the

boundary condition at infinity is a natural condition

for the field in the absence of diffusion it will tend

to be the uniform condition established throughout the

field in the case of high frequency. Such a condition

is an isentropic oscillation "at infinity". It is now

reasonable to expect that an asymptotic solution for high

frequency will not blow up as finite power in r if

properly treated.

For c_ = _ assume

o

r

+- N ,-)

÷ K r)

(C-24)
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with similar assumed forms for _" and H, _, L , and b4 .

For large _ the first two terms for yp and the first

for _o are important only near the liquid and flame

boundaries. The terms die off exponentially and match

no power of _( in _ or %4 . Therefore, _"_ and I"4

must be the solution in the majority of the field. The

exponential solutions will be picked to satisfy the

homogeneous differential equations and _ and _ will

be particular solutions of the full differential equations.

This is a common procedure of inner and outer expansions

and is required since _ and _4 developed in powers of

\/_ will not be able to satisfy all the boundary conditions.

This is a singular perturbation problem with wild behavbr

taking place near the boundaries. The problem will not

be done in complete generality, but only a sketch will

be given to obtain the results for the leading power of

frequency. Some of the actual analytical forms will not

have to be developed. This procedure is completed in

much more detail in ChapterIV for a more complex system.

Formally expanding _ and _4 in powers of I/_

I_ _'_- (I-¥,,I _ _ __-._"_

i._ (.- :")_ +,,

-I
t+..,,.l..l

+ %1[(-'-+J.++'--.+..,+"'+

r y
(C-25)
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and so on recursively,

Now

r

r,_

(C-26)

and since _T has a similar expansion to

shown that

, it may be

f-.

q.

(C-27)

assuming M L is 0_] or less. _q blows up as

r-_ . This behavior is sufficiently suppressed

as r--_o for all orders in c_ . Thus, the outer

boundary condition on _o is satisfied. Construction of

the full solution near the surface and flame boundaries

is now attempted.

Consider first the droplet surface.
Expanding _FL)

The mass transfer condition yields

It is concluded that the only term which can balance

A%

is _ ML so that

q_

o<
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where the assumed expansion for _U is

l

But _co_ (r_.) =O so that

_L

Consideration of the energy equation would show that

(C-28)

These conditions hold in the limit of _)_ and the

following conclusions may be drawn:

i. The surface mass flow perturbation goes to

infinity as the square root of frequency and is larger

for larger steady state mass flows.

2. The surface mass fraction perturbation remains

finite thereby justifying partially the neglect of surface

temperature perturbation.

It may be shown that a consistent procedure

yields G c°_ L C°l= = O • Using the flame conditions in Eq. (C-19)!

(C-30)
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Therefore, from Eq. (C-25)

Evaluating the perturbation form of Eq. (C-5) at the

flame

I

or

(C-31)

so that using Eq. (C-30)

_p £_1- (')- co_l ^

¢oi
Using Eq. (C-30) to evaluate _ C_}

and the full mass burning rate perturbation

#,

tel _ I_ CO) _ ._0)

(C-32)

(C-33)

This solution depends upon the solution of the energy

equation to determine _('_)_ however, for the purposes

here it is not necessary to do so. Regardless of the

magnitude of _ (usually #_. |Or L for non-convective
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droplet burning) and regardless of _'%(_} Eq. (C-33)

must be at least of order unity since ,n(_)is O[_4_

This shows that while the vaporization rate perturbation

goes to infinity the burning rate remains finite of order

unity, as the frequency tends to infinity and either is

in or 180 ° out of phase with the pressure. This seeming

paradox actually presents no problem since the total

perturbation in mass released during any portion of a

cycle is zero as frequency tends to infinity. In

diffusion processes one cannot speak of rates at two

dlfferent boundaries being equal since rates of storage

in the interior would then be neglected.
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APPENDIX D: WAVESCATTERINGFROMA SPHEREAT THE FORWARD
STAGNATIONPOINT

In the inviscid field the equation for the pertur-

bation velocity potential _ e _ defined by

1is .

A boundary condition is that far from the body the velocity

must be that of a plane wave given by Eq. (3.22)

Since the normal velocity at the body must be zero, Neumann

conditions hold.

_n (body) = O

A sphere will be assumed for the body so that the boundary

conditions become

/

where r is the radial variable in spherical coordinates,

is measured from the sphere center, and axial symmetry is

(D-2)

i. Morse, P. M., and Feshbach, H., Methods of Theoretical

Physics, Vol. I, McGraw Hill, New York, 1953, p. 163.
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assumed. It is assumed 6_M_<I such that a series

expansion

_'o

is attempted. Then EqOs. (D-l) and (D-2) become to first

v_0 '"=o

_,z_ (.,)= 0

order in

(D-3)

_,coJ(Ij o)= 0

_,l (,t o) -_.O
t" l

It may be immediately verified that

(D-4)

2. (D-S)

and

= =" 3 - lq("'+ ../ (D-6)

are solutions of Eq's. (D-3) and (D-4).

The velocity at the surface is then given by
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Then expanding

• the boundary condition for the edge of the boundary

layer in inner variables is

for _,_ in the direction of increasing

It should furthermore be clear that the first

term of Eq. (D-7)_representing the quasi-steady state, is

also the solution for the steady state inviscid flow in

the vicinity of the stagnation point. This is obvious

since the zeroth order equations of Eq's. (D-3) and (D-4)

are equations holding for the steady state velocity

potential for M 2 (< i.

(D-7)
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APPENDIX £i STAGNATIONPOINT HIGH FREQUENCYANALYSIS

The equations

pl,i + _ FP"-
$

_r-If +_F_r _

__F'P' + _ F"P - -_ f_ P'= _JMF"'
S 9

a q
* _I M T"

(E-la)

]
(E-ib)

(E-ic)

are to be solved for high _o subject to the boundary

conditions

Surface

P;(.o): _'(o} = o

_i='0_;: }O-Y,.JEPCW * r4NF(:ol3- _ _F. PCo)

Flame

(E-2)

(E-3)
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Infinity

Ir (--)--- - _M (,r-,I

Defining the high frequency parameter and variables

£B -4)

and assuming the existence of a uniformly valid

expansion of the form

P= H(._) "," R,L#,_ + R--,.LI_._)

V_(_)_W.C_) __/_k #_)

-5)

composite

(E -6 )

Eq's. (E-l) become

B _ (E -7a)

s +_-t_'-,)T: • -?-s"÷ '-,,:-,',- _. _, ,,{_ -- a'_ M ]- (E-7b)

(E -7c)
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(E-8b)

'L "_W - -_ _[FW a
(E-8c)

Eq's. (E-8) are valid for either#l or#_ and represent

differential equations for the quantities important

near boundaries. From their form it can be seen that

solutions with exponential decay away from boundaries

can be picked.

any finite power of c_ if _f is

Assuming the frequency expansion

H : I_" -i(_'{97

Therefore, R2 cannot influence R1 to

OE, J •

Eq's. (E-7) and (E-8) become

-_ L£ _MT
q

-A 6,), "=- 0

El(-,,"'

al F. 21 (-,)

a _''.- _[_,*°"; F__o'''._-L_(°",- '°t7 - -
,,/

(E-10a)
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-4

n23

_-- - 4ML %r-,) T + 31-I_ £'_)

-{-I

Ii

4- _1 __- co) _ T
'- _'.(m -]-/_I

/

_r - v_ c = _3_( _'t".:

n>3

(E-10b)

(E-10c)

_P (.,,.,} I!/,,.. _ (_J t --- 0
r (E-lla)

UL ('b'' ] ll -- _L IjL LV") __ 0

(E-llb)

-- _ i_,_ "_) --O (E-IIc)

Where m is the order of the first non-zero solutions.

If near the boundaries F has the expansions

F = (1,,,, C,_, _" • F = 2[ a._,.,(_,s_)"
n =0 )

n._o
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then higher order equations from Eq's (E-8) can be

easily developed from Eq's. (E-II). From Eq's.(E-6)

and (E-9) the boundary conditions, Eq's. (E-2)-(E-4),

become

I
r" (,o) = 0

II c

.._ C- | J ,-, L-÷.Co) ÷ ,F. C IC#] :@
(E-12a)

•,d(")(O) + UFL (o] _- 0
(E-12b)

(E-12c)

I'. (.-Zl"Ac''lc°_ ÷ _c co_ -- o

_-'" " [,A '-"co, r, _'"c ]

(.'1I.

,]
F_ _ (E-12d)
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(.oli

(_-13b)

(E-fat)

(E-13d)

(_-13e)

(E-13_)

(£-lag)

(_-14a)

(E-Z4b)

(E-14c)
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These conditions are all valid to

first the problem at the wall.

Consider

Choosing

= A _c-,)

FF _-zj_ t%, Eq.

Eq's. (E-10a) yield

(E-lla) yields

.%+ A ,=r" e
FL.

Application of the no slip condition, Eq. (E-12a), yields

A (.-'| to•,r.. = - - 4H 1_
?

By Eq's. (E-10b)

(o)= -_H(¥-,IT + 3"1-1_ _-_)

Then Eq's. (E-12b) say

From Eq. (E-llb)

LA_

Application of Eq. (E-12b) yields

A co, = 4"_I_-,) "Z"

Then Eq's. (E-12d) yield _I-,). Continuing, the procedure

is as follows:

i. Solve all of Eq's. (E-10) in terms

•

of the constants of integration, A_(.)"

Solve the higher order counterparts

of Eq's. (E-If) choosing exponential

decay into the region.

3. Eq's. (E-12a) determine

4. Eq. (E-12b) determine

5. Eq's. (E-12d) determine

6. Eq's. (E-12e) determine
U

r--_ "

A _ L-*i).
F4

'_W' In+l)
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Now consider the flame problem. Eq's.(E-13)

state the r solutions are zero up to and including _i.

Eq's. (E,13f and g) determine the r's for _°and Eq's. (E-13e)

determine the jump in A_(o,. This procedure is repeated

Ar_ }-_ Now Eq's.to determine all _(n) ; }p and A r_ •

(E-13a and b) and (E-10c) say that the w's are zero up

to o( . SimilaPly the u's are zero up to o_. Applying

these conditions and using Eq. (E-llc),

and

,,,v--)_ "./., B:,
Po - Aw#2J e

flame problem is as follows:

i. Since all
A rl,ro,l"l_ r'_ _A/, and AALaare

("Jareare known all V{"land _ known.

2. Eq's. (E-13c and d) determine A_(-and Au6("_F.

3. Eq's. (E-13a and b) determine _v_";and _. (-I

Solutions to Eq's (E-II) are always picked to have exponential

decay into the region of interest. Eq's. (E-14a) are automatically

satisfied by Eq's. (E-10).

Following this procedure, the mass burning rate

perturbation at the flame is evaluated. Tracing through

the stagnation point transformations Eq. (3.12c) becomes

Similarly, the recursive procedure to determine the complete
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Therefore,

+ 0 E_*_] + o_ _]

(E-IS)
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